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Introduction

Les personnes qui n’ont pas étudié la question sont sujettes à
se laisser induire en erreur.
Lord Raglan, in Le Tabou de l’Inceste, Payot 1935
cité par Boris Vian (1920–1959), Écrivain français,
in L’Automne à Pékin (1956)

Présentation
Cet ouvrage a pour but de fournir à un élève de section européenne « anglais »
qui suivrait les mathématiques comme dnl (Discipline Non Linguistique) les
bases du vocabulaire anglais spécialisé — couvrant les connaissances acquises
au Collège — ainsi qu’un cours complet de 2de conforme au programme appli-
cable à compter de l’année scolaire 2000–2001, paru dans le B.O. Hors-Série
No 6 du 12 août 1999.

Ce cours ne contient pas, à proprement parlé, d’exercices — on les don-
nera, tout au long de l’année, dans des fiches thématiques — mais il contient
des exemples traités complètement.

Le texte est accompagné de la transcription phonétique des mots spécia-
lisés lorsque le lecteur les rencontre la première fois. Ils sont repris en index.
On les retrouvera également dans des tableaux situés en appendices. Les mots
y sont rangés par affinité de sens et non pas par ordre alphabétique. Dans
ces tableaux on trouvera également la prononciation, les pluriels irréguliers
et un équivalent français fonction du contexte.





Chapter 1

Numbers

I have often admired the mystical way of Pythagoras1, and
the secret magic of numbers.
Sir Thomas Browne (1605–1682), English writer and physi-
cian,
in Religio Medici (1643)

1.1 Reminder

1.1.1 Writing and reading numbers

To write numbers one uses ten figures [ fIg@r] or digits [ dIdZIt]:

0 zero or nought [ zI@r@U – nO:t] 1 one [w2n]
2 two [tu:] 3 three [Tri:]
4 four [fO:r] 5 five [faIv]
6 six [sIks] 7 seven [ sevn]
8 eight [eIt] 9 nine [naIn]

‘Naught’ is a variant spelling (especially in the USA) of ‘nought’.
100 is ‘one hundred’ [ h2ndr@d]; 256 is ‘two hundred and fifty six’; 7, 547

is ‘seven thousand [ TaUznd] five hundred and forty seven’.
3·142 is ‘three point one four two’. The decimal point used to be centered

in British English, e.g. 2 3·14, but not in American English, e.g. 3.14.
1Pythagoras [paI Tæg6r@s]
2e.g. (abbr.) ‘for example’, Latin ‘exempli gratia’. It is read [ i: dZi:] or [f@rIg zA:mpl].

1
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·472 is 0·472 i.e. 3 ‘point four seven two’ or ‘nought point four seven two’.
·01 is ‘nought point nought one’ or ‘point nought one’.

1.1.2 Scientific Notation — Standard Form

Scientific [ saI@n tIfIk] notation is a way of writing numbers that makes it
easier to work with the very large and small numbers often found in scientific
measurements [ meZ@m@nt].

When a number is written in scientific notation, the number is written as
the base number m (or mantissa [mæn tIs@]) times ten raised to a power p
(or exponent [Ik sp@Un@nt]), expressed as m× 10p. The mantissa is not less
than 1 and less than 10 (1 ≤ m < 10). The power p is an integer[ IntIdZ@r].

The speed of light expressed in standard form is 2·9979× 108 m.s−1.

1.1.3 Large Number Names

Number US Name British Name
106 million million
109 billion milliard
1012 trillion billion
1015 quadrillion 1,000 billion
1018 quintillion trillion
1021 sextillion 1,000 trillion
1024 septillion quadrillion
1027 octillion 1,000 quadrillion
1030 nonillion quintillion
1033 decillion 1,000 quintillion

In the 1996 edition of the Oxford English Reference Dictionary it can be read:
‘milliard: Now largely superseded by billion.’

Around 1484 Nicolas Chuquet4 coined the words billion, trillion, . . . , nonil-
lion, which also appeared in print in a 1520 book by Émile de la Roche. These
mathematicians used ‘illion’ after the prefixes b-, tr-, . . . , non- to denote the 2nd,
3rd, . . . , 9th powers of a million. But around the middle of the 17th century, some
other French mathematicians used them instead for the 3rd, 4th, . . . , 10th powers
of a thousand.

3i.e. (abbr.) ‘that is to say’, Latin ‘id est’ [aId i:st]. It is read [ aI i:] or [ ðæt Iz]
4French mathematician (1445–1500)
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Although condemned by the greatest lexicographers as ‘erroneous’ (Littré)
and ‘an entire perversion of the original nomenclature [n@U menkl@tS@r] of Chuquet
and de la Roche’ (Murray), the newer usage is now standard in the US, although
the older one survives in Britain and is still standard in the continental countries
(but the French spelling is nowadays ‘llon’ rather than ‘llion’).

1.1.4 Operations

The basic operations [ 6p@ reISn] are addition [@ dISn], subtraction [s@b træk-
Sn], multiplication [ m2ltIplI keISn] and division [dI vIZn].

Addition and subtraction

Addition is the operation of combining two numbers to form a sum [s2m].
The symbol for addition is + ‘plus [pl2s]’, from the Latin, meaning more;
it is placed between two numbers to be added together. Thus, 8 + 7 means
‘eight plus seven’ or ‘seven added to eight’.

The symbol = means ‘is equal [ i:kw(@)l] to’ or ‘equals’, so 8 + 7 = 15
‘eight plus seven equals fifteen’.

Let us consider a + b = c. c is the sum, a and b are the summands
[ s2 mænd], addends [@ dend] or terms [t3:m].

The symbol for subtraction is − ‘minus [ maIn@s]’, from the Latin, mean-
ing less; it is placed between two numbers, when the second is to be taken
away from the first. For example, 12− 9 means ‘twelve minus nine’ or ‘nine
taken away from 12’.

Let us consider a− b = c. c is the difference [ dIfr@ns], a is the minuend
[ mInjU end] and b the subtrahend [ s2btr@ hend].

Let a be a number. −a is the additive inverse [ ædItIv In v3:s] of a. We
have −a+ a = 0.

Multiplication and division

The symbol for multiplication is × ‘times’ [taImz]. 12×5 = 60 is read ‘twelve
times five equals sixty’ or ‘twelve multiplied [ m2ltIplaId] by five equals sixty’.

In a × b = c, a and b are the factors [ fækt@r] and c is the product
[ pr6d2kt].

The sign for division is ÷ ‘divided [dI vaIdId] by’. Generally we write a/b
or a

b
‘a over b’ instead of a÷ b.
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In a

b
= c, a is the dividend [ dIvI dend], b is the divisor [dI vaIz@r] and c

is the quotient [ kw@USnt].
67 when divided by 7 gives a quotient of 9 and a remainder [rI meInd@r]

of 4 for we have 67 = 7× 9 + 4.
If a is any number but 0, a has a multiplicative [ m2ltI plIk@tIv] inverse or

reciprocal [rI sIpr@kl] which is denoted by 1
a
or by a−1 ‘a to the power minus

1’. We have a× 1
a

= 1.

Factors

Consider 12 = 3 × 4; 3 and 4 are said to be factors of 12. 12 is said to
be a multiple [ m2ltIpl] of 3. One can say also that 12 is exactly divided or
divisible [dI vIz@bl] by 3.

An integer is said to be even [ i:vn] if and only if it is divisible by 2. If
an integer is not even then it is odd [6d].

A common factor of two (or more) numbers is a factor which occurs in
both of them (or all of them). The highest common factor (H.C.F.) of a
group of numbers is the largest number which will divide into all of them.

The lowest common multiple (L.C.M.) of two or more numbers is the
smallest number into which they will divide exactly.

1.2 The different kinds of numbers

1.2.1 Natural numbers

The natural numbers [ nætSr@l n2mb@r] or whole [h@Ul] numbers are 0, 1, 2,
3, . . . The set of all natural numbers is denoted by N. To denote that the
number n is a natural number one can write n ∈ N ‘n is in N’ or ‘n belongs
to N’ or ‘n is an element [ elIm@nt] of N’.

Prime numbers

Many natural numbers have no factors other than themselves and unity
[ ju:n@tI] (i.e. one), e.g. 7. These numbers are called prime [praIm] num-
bers or primes.

A number greater than 1 which is not prime is said to be composite
[ k6mp@zIt].
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Proposition 1–1:
Every natural number greater than 1 is a product of prime numbers.

For example: 630 = 2× 3× 3× 5× 7.

1.2.2 Integers

The integers [ IntIdZ@r] are also called directed [dI rektId] numbers or signed
[saInd] numbers. The integers can be obtained as sum or difference of two
natural numbers. The set of all the integers is denoted by Z. We have
Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

The natural numbers are the positive [ p6z@tIv] integers and 0. So all
the elements of N are also elements of Z. One may write N ⊂ Z: ‘the set of
the natural numbers is a subset of the set of the integers’ or ‘the set of the
natural numbers is included in the set of the integers’.

1.2.3 Rational numbers

A fraction [ frækSn] is the ratio [ reISI@U] or quotient of two numbers. In the
fraction a

b
the number a is said to be the numerator [ nju:m@reIt@r] and the

number b which is not equal to 0 is said to be the denominator [dI n6mIneIt@r].
A fraction like 6

7 (written in words ‘six sevenths’), in which the numerator
is smaller than the denominator, is called a proper fraction, whereas one like
17
12 , in which the numerator is greater than the denominator, is called an
improper fraction. The latter can always be reduced to a whole number
— or integer — and a proper fraction, known as a mixed number.

Here we have 17
12 = 12 + 5

12 = 1 + 5
12 which is written 1 5

12 ‘one and five
twelfths’.

1
2 is ‘one half’, 1

3 ‘one third’, 2
3 ‘two thirds’, 1

4 ‘one quarter’, and 3
4

‘three quarters’.
We can cancel out common factors in numerator and denominator, e.g.

24
28 = 4× 6

4× 7 = 6
7

on dividing out top and bottom by 4.
When the numerator and denominator have no common factor the frac-

tion is said to be ‘in its lowest terms’. To reduce a fraction to its lowest
terms, divide the numerator and the denominator by their highest common
factor.
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To find the sum of two unlike fractions — fractions having different de-
nominators — change them to like fractions — fractions having the same
denominator — and add the numerators.

To find the quotient of two fractions, multiply the dividend by the inverted
[In v3:tId] divisor, e.g.

5
6 ÷

1
2 = 5

6 ×
2
1 = 5

3 = 12
3 .

The rational numbers or rationals [ ræS@nl] are the numbers that can be
expressed as a ratio or fraction a

b
of two integers, a and b, of which the latter

may not be zero.
The set of the rationals is denoted by Q.

Proposition 1–2:
For every rational q, there exists one and only one fraction in its lowest terms
which is equal to q.

A decimal fraction or decimal [ desIm@l] is a rational which can be written
with a denominator equal to a power of 10. For example, 0.125, 3

4, and −
245
70

are decimal for we have:
0.125 = 125

1, 000 ,
3
4 = 3× 25

4× 25 = 75
100 = 0.75, and − 245

70 = −35
10 = 3.5

It is always possible to write an integer as a fraction. So all integers are
rationals. We can write Z ⊂ Q.

1.2.4 Real numbers

Some numbers are not rational. For instance, π [paI] is not a rational. It has
been proven 5 that there exists no fraction equal to π. The number π is said
to be irrational [I ræS@nl]. It is also the case for such numbers as

√
2 ‘square

root [skwe@ ru:t] of 2’,
√

3 ‘square root of 3’, . . . The rational and irrational
numbers together form the set of the real [rI@l] numbers or reals. The set of
the real numbers is denoted by R.

All the rationals are reals and so Q ⊂ R.
Let L be a line [laIn]. Let O and U be two points [pOInt] on that line

such that OU = 1. (O ; U ) is said to be a coordinate [k@U O:dn@t] system of
line L.

5The proof was given in 1761 by Johann Heinrich Lambert (1728–1777), mathemati-
cian born in Mülhausen, Germany.
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To every point M on L one can associate [@ s@USIeIt] a real number xM

(x sub M), its abscissa [æ bsIs@] 6 which is defined by:
• xM = OM if M is on the ray [reI] — or half-line — [OU);

• xM = −OM if M is not on the ray [OU).
Conversely [ k6n v3:slI], to every real number x one can associate on L a
point M the abscissa of which is x. So R is the set of all the absissae of the
points of L.

In such a case L together with (O ; U ) is said to be the real axis [ æksIs].-0O 1U�1�4 2:2 ��73 L
Fig. 1–1

The positive [ p6z@tIv] real numbers are the abscissae of the points of
[OU) but O. 0 is the abscissa of O. The negative [ neg@tIv] real numbers are
the abscissae of the points which are not on [OU).

R+ is the set of all the positive real numbers together with 0, in other
terms, R+ is the set of all the non-negative real numbers. R− is the set of all
the non-positive real numbers. R∗ is the set of all non-null [n2l] real numbers.

6plurals: ‘abscissas’ [æ bsIs@z] or ‘abscissae’ [æ bsIsi:]





Chapter 2

Ordering – absolute value

Had I been present at the Creation, I would have given some
useful hints for the better ordering of the universe.
attributed to Alfonso ‘the Wise’ (1221–1284)— King of Castile
and León from 1252 — on studying the Ptolemaic system.1

2.1 Ordering

Two real numbers can always been compared. Let a and b be two real
numbers. Then or a < b ‘a is less than b’ or a = b ‘a equals b’ or a > b ‘a is
greater than b’.

If a < b is not true then a ≥ b i.e. ‘a is not less than b’ or ‘a is greater
than or equal to b’.

If a > b is not true then a ≤ b i.e. ‘a is not greater than b’ or ‘a is less
than or equal to b’.
Proposition 2–1:
Let a and b be two reals. a > b if and only if a− b is positive; a ≥ b if and only
if a− b is non-negative; a < b if and only if a− b is negative; and a ≤ b if and
only if a− b is non-positive.
Remark: From now on and for sake of convenience we shall replace the expression
‘if and only if’ with its common abbreviation ‘iff’. We can replace the expression
‘if and only if’ with ‘means’ or ‘is equivalent to’.
Let P and Q be propositions — statements, sentences that affirm or deny something

1Ptolemaic [ t6lI meIIk]: of or relating to Ptolemy [ t6lImI], (2nd century), Greek as-
tronomer and geographer.

9
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and which are capable of being true or false. Whenever we know that ‘If P then
Q’ and ‘If Q then P’ we can state that ‘P iff Q’.

As a consequence, for every real a: if a > 0 then a is positive; if a < 0
then a is negative.

If a = 0 then a is said to be null [n2l].

2.1.1 Inequalities

One can add or subtract the same number from both sides of an inequality
[ InI kw6l@tI] and multiply or divide both sides by positive values without
changing the inequality. But when one multiply or divide both sides of the
statement by a negative value it is very important that one remembers that
the inequality reverses. We can sum this up with:
Proposition 2–2:
Let a, b, and c be reals.

• If a ≤ b then a+ c ≤ b+ c.

• If a ≤ b and c ≥ 0 then a× c ≤ b× c.

• If a ≤ b and c ≤ 0 then a× c ≥ b× c.

As consequences of that proposition we can state the two following propo-
sitions.
Proposition 2–3:
Let a, b, c, and d be reals. If a ≤ b and c ≤ d then a+ c ≤ b+ d.
Proposition 2–4:
Let a, b, c, and d be non-negative reals. If a ≤ b and c ≤ d then ac ≤ bd.

2.1.2 Intervals

Definitions

Definition 2–1:
Let a and b be two reals such that a < b. The set of real numbers which are
not less than a and not greater than b is a closed interval [kl@Uzd Int@vl]
of R. It is denoted by [ a ; b ].
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We can write x ∈ [ a ; b ] iff a ≤ x ≤ b. The numbers a and b are the
endpoints of the interval [ a ; b ]. It can be graphically represented as below.
NB: we hatch what does not belong to the interval. -[a ℄b -[a ℄b[ a ; b ℄or Fig. 2–1

There are nine types of intervals which are:

[ a ; b ] : the set of real x such that a ≤ x ≤ b

[ a ; b [ : the set of real x such that a ≤ x < b

] a ; b ] : the set of real x such that a < x ≤ b

] a ; b [ : the set of real x such that a < x < b

[ a ; +∞ [ : the set of real x such that a ≤ x

] a ; +∞ [ : the set of real x such that a < x

]−∞ ; b ] : the set of real x such that x ≤ b

]−∞ ; b [ : the set of real x such that x < b

]−∞ ; +∞ [ : the set of all reals

An interval such as ] a ; b [ is said to be open. An interval such as [ a ; b [
is said to be ‘closed in a and open in b’. The sign ‘+∞’ is read ‘plus infinity’
[In fIn@tI], it does not denote a number. The sign ‘−∞’ is read ‘minus
infinity’, it does not denote a number either.

Intersection and union

Definition 2–2:
The intersection of two intervals I and J is the set of all reals which are in
I and in J . It is denoted by I ∩ J which is read ‘I cap J ’.

For example, let I = [ 0 ; 10 ] and J = [−5 ; 4 ], then I ∩ J = [ 0 ; 4 ] for
x belongs to I ∩ J if and only if x ∈ I and x ∈ J that is 0 ≤ x ≤ 10 and
−5 ≤ x ≤ 4 which is equivalent to 0 ≤ x ≤ 4. On the figure below the
intersection is represented by the segment which is not hatched.
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The intersection of I = ] 0 ; 3 [ and J = [ 5 ; 10 ] contains no real. One
says that this intersection is equal to the null [n2l] set (or void [vOId] set or
empty set) which is denoted by ∅. On the figure below all the line is hatched.-℄0 [3 [5 ℄10Fig. 2–3

The intersection of I = [ 0 ; 3 ] and J = [ 3 ; 10 ] contains only 3. One
writes I ∩ J = {3}. The intersection of I = [ 0 ; 3 [ and J = [ 3 ; 10 ] does
not contain any number for 3 does not belong to I. In the last two cases
graphical representations are not really useful.

Definition 2–3:
The union of two intervals I and J is the set of all reals which are in I or
in J . It is denoted by I ∪ J which is read ‘I cup J ’.

For example, let I = [ 0 ; 10 ] and J = [−5 ; 4 ], then I ∪ J = [−5 ; 10 ]
for x belongs to I ∪ J if and only if x ∈ I or x ∈ J that is 0 ≤ x ≤ 10 or
−5 ≤ x ≤ 4 which is equivalent to −5 ≤ x ≤ 10.

In the following figure each interval is represented with a bold line. The
union is then represented by the whole bold segment. -[�5 ℄10[0 ℄4Fig. 2–4

Remark: The union of two intervals is not always an interval for a subset of R is
an interval iff it is represented by a segment, a ray, or the whole line. For example
[−1 ; 1 ] ∪ [ 3 ; 4 ] is not an interval.
The two bold segment do not touch or overlap. -[�1 ℄1 [3 ℄4Fig. 2–5
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2.2 Distance and absolute value

2.2.1 Definitions

Definition 2–4:
Let x and y be two reals and M and N the points on the real axis the
abscissae of which are x and y respectively.
The distance [ dIst@ns] between x and y, denoted by d (x ; y ) is defined by:

d (x ; y ) = MN.

For example d ( 7 ; 1 ) = 6 for 6 is the distance between the points with
abscissae 1 and 7. For analogous reason d (−4 ; 5 ) = 9.
Remark: For any reals x and y, d (x ; y ) is non-negative for it equals a distance.
Moreover, as MN = NM , then d (x ; y ) = d ( y ; x ).

Definition 2–5:
Let O be the origin on the real axis. Let x be a real andM the point on the
real axis the abscissa of which is x. The absolute value [ æbs@lu:t vælju:]
of x, denoted by |x|, is the distance from x to 0. It is also the distance from
M to O. We have:

|x| = d ( 0 ; x ) = OM.

For example |3| = 3 and |−4| = 4. -0O 1U�4 3 R
Fig. 2–6

Remark: For all real x, as d ( 0 ; x ) is non-negative, |x| is a non-negative real.
For all real x, point M ′, abscissa −x, is the reflection of point M , abscissa x,
through O therefore OM = OM ′ and so |x| = |−x|.

2.2.2 Properties

We now state useful properties some of which are proven. You can try to
work out a proof for the remaining ones.

The first one is easy to prove if you remember the geometrical interpre-
tation of the absolute value as a distance on the real axis. (Draw a figure.)
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Proposition 2–5:
Let x be a real.

• If x is positive, then |x| = x.

• If x is negative, then |x| = −x.

Proposition 2–6:
For all x and y real numbers.

• If x ≥ y, then |x− y| = x− y.

• If x ≤ y, then |x− y| = y − x.

• d (x ; y ) = |x− y|.
Proof:
If x ≥ y then x− y ≥ 0 therefore |x− y| = x− y.
If x ≤ y, then x− y ≤ 0 therefore |x− y| = − (x− y) = y − x.

Proposition 2–7:
Let α be a non-negative real number and a be any real. For all x real:

|x− a| ≤ α iff a− α ≤ x ≤ a+ α iff x ∈ [ a− α ; a+ α ] .
Proof:
We have to distinguish two cases depending on the place of x relatively to a.
First case: x ≤ a.
Then |x− a| ≤ α is equivalent to a−x ≤ α i.e. a−α ≤ x. Therefore in this case, x fulfills
the inequality |x− a| ≤ α iff a− α ≤ x ≤ a.
Second case: x ≥ a.
Then |x− a| ≤ α is equivalent to x− a ≤ α i.e. x ≤ a+α. Therefore in this case, x fulfils
the inequality |x− a| ≤ α iff a ≤ x ≤ a+ α.
For all x real, x ≤ a or x ≥ a. So |x− a| ≤ α is equivalent to a−α ≤ x ≤ a or a ≤ x ≤ a+α
i.e. |x− a| ≤ α is equivalent to a− α ≤ x ≤ a+ α. qed 2

Proposition 2–8:
Let x and y be two real numbers.

• |xy| = |x| |y|;

• If y 6= 0 then
∣∣∣∣∣xy
∣∣∣∣∣ = |x|
|y|

;

• |x+ y| ≤ |x|+ |y| (triangle inequality).

2QED stands for latin ‘quod erat demonstrandum’ and means ‘which was to be proven’.
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2.3 Approximation
There are basically two types of errors which we need to consider in mathe-
matics: measurement errors [ meZ@m@nt er@r] and round-off [ raUnd6f] er-
rors. A measurement error is always present whenever a physical [ fIzIkl]
quantity [ kw6nt@tI] is measured [ meZ@d]. A round-off error is present when-
ever a number is rounded to a specified [ spesIfaId] number of decimal places
(d.p.) or significant [sIg nIfIk@nt] figures (s.f.). Round-off errors are also
present when a computer chops off — or truncate [tr2ŋ keIt] — numbers
which it is working with or displaying. By errors we do not mean mistakes.

Measuring a value to the nearest unit means deciding that it is nearer one
mark than another, in other words it is within half a unit of that mark. For
example, if David’s age is 14 to the nearest year that means he is actually
between 131

2 and 141
2 and, more precisely, that the age is not less than 131

2
and less than 141

2 .
If x is an approximation to an exact number X, then the absolute error in

x is e = x−X. The absolute error bounds are the limits between which the
absolute error lies. So, if |e| ≤ ε, where ε > 0, then ε is called the maximum
absolute error bound of x.

Knowing that, we can write X = x± ε. That means that the true value
of number X lies between x− ε and x+ ε, i.e. x− ε ≤ X < x+ ε.

In general, the maximum absolute error bound when a number has been
rounded to n decimal places is 1

2 ×10−n. For example, ‘The Sun is 93 million
miles from the Earth’ means that the Sun is 9.3 × 107 miles from Earth, to
the nearest million miles. Here, the absolute error bound is 0.05× 107 miles
i.e. if d is the distance, in miles, from the Earth to the Sun,

(9.3− 0.05)× 107 ≤ d < (9.3 + 0.05)× 107.

To round down a number is to approximate it to a certain number of
significant digits or to a whole number or number of tens, hundreds, etc. by
replacing the remaining digits by zero. For example, 432.25 can be rounded
down to 432.2, 432, 430, or 400 according to circumstances.

To round up a number is to approximate it to a certain number of sig-
nificant digits or to a whole number or number of tens, hundreds, etc. by
increasing the relevant digit by one and replacing the remainder by zeros.
For example, 486.75 can be rounded up to 486.8, 487, 490, or 500 according
to requirements.





Chapter 3

Triangles

3.1 Congruent triangles

Definition 3–1:

Triangles ABC and DEF are said to be congruent [ k6ngrU@nt] iff
AB = DE, BC = EF , and CA = FD.

The sides [AB] and [DE] are said to be corresponding [ k6rIs p6ndIŋ] as
are corresponding the vertices A and D and the angles ∠BAC and ∠EDF .

This definition will be referred to as the SSS rule (SSS for Side-Side-Side).
On the following figure, triangles ABC, DEF , and GHI are congruent.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bA
C

B D
F E

I
G H|

|

|

Fig. 3–1

Proposition 3–1:
If ABC and DEF are congruent then their corresponding angles are equal:
∠BAC = ∠EDF , ∠ABC = ∠DEF , and ∠ACB = ∠DFE.

17
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This property is known as the AAA rule (AAA for Angle-Angle-Angle).
We can then sum up the preceding property whith: SSS =⇒ AAA .
Proposition 3–2: (SAS rule)
If two sides and the angle between them (the included angle) are the same in
both triangles then these triangles are congruent.

The converse of that property is obviously true. So SSS ⇐⇒ SAS .
Proposition 3–3: (ASA rule)
If two angles and the side between them are the same in both triangles then
these triangles are congruent.

The converse of that property is obviously true. So SSS ⇐⇒ ASA .
Proposition 3–4:
A triangle ABC and its image A′B′C ′ under an isometry [aI s6mItrI] (transla-
tion, reflection, rotation) are congruent.

3.2 Similar triangles

Definition 3–2:
Triangles ABC and DEF are said to be similar [ sImIl@r] iff

∠BAC = ∠EDF , ∠ABC = ∠DEF , and ∠ACB = ∠DFE.

Proposition 3–5:
If ABC and DEF are similar, then their sides are in the same ratio i.e.

AB

DE
= BC

EF
= AC

DF
.

The sides [AB], [BC], and [CA] are said to be homologous [h6 m6l@g@s]
to the sides [DE], [EF ], and [FD] respectively.

b

b

b

b

b

b

b

b

b

b

B
A

C B
A

CM N
MN

Fig. 3–2
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Proposition 3–6:
Let ABC be any triangle. Let M and N be points on (AB) and (AC) re-
spectively such that (MN) is parallel to (AB). Then ABC and AMN are
similar.
Proposition 3–7:
Let ABC and DEF be triangles such that

AB

DE
= BC

EF
= AC

DF
.

Then ABC and DEF are similar.

Definition 3–3:
Let ABC and A′B′C ′ be similar triangles such that

A′B′

AB
= B′C ′

BC
= A′C ′

AC
= k.

• If k = 1 then the triangles are congruent.

• If k 6= 1 then A′B′C ′ is said to be an enlargement of ABC by scale
factor k.

Proposition 3–8:
If A′B′C ′ is an enlargement of ABC by scale factor k then the area of A′B′C ′
is k2 times the area of ABC.





Chapter 4

Analytic Geometry

In Geometry (which is the only science that it hath please
God hitherto to bestow on mankind) men begin at settling the
significations of their words; which . . . they call Definitions.
Thomas Hobbes (1588–1679), English philosopher,
in Leviathan 1 (1651)

For sake of convenience, we will write L ‖ M to denote that the lines L
and M are parallel.

4.1 Parallelograms

Definition 4–1:
Let A, B, C and D be four points in the plane. ABCD is a parallelogram
[ pæræ lel@græm] iff its diagonals bisect [baI sekt] each other.

For sake of convenience, we will write ABCD # as an abbreviation of
the sentence ‘ABCD is a parallelogram’.

Parallelograms have many properties of which we state but a few. The
first two properties given below involve the four sides of the quadrilateral
ABCD. The third one involves only two of them.
Proposition 4–1:
ABCD is a parallelogram iff its opposite sides are parallel, i.e. iff (AB) ‖ (CD)
and (AD) ‖ (BC).

1Hobbes [h6bz] — leviathan [lI vaI@Tn]

21
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Proposition 4–2:
ABCD is a parallelogram iff its opposite sides have the same length, i.e. iff
AB = CD and AD = BC.
Proposition 4–3:
ABCD is a parallelogram iff two opposite sides are parallel and have equal
lengths, i.e. iff e.g. (AB) ‖ (CD) and AB = CD.

4.2 Vectors

4.2.1 Equality

Let A and B be two points. The vector −−→AB is represented by an arrow from
A to B. A is the beginning point and B the end point. If −−→AB = −−−→CD we
can decide to denote that vector with a single sign as e.g. −→u . So −−→AB =−−−→
CD = −→u . In such a case the ordered pairs (A ; B ) and (C ; D ) are said
to represent the vector −→u .

In English texts one can find u or u instead of −→u to denote the vector ‘u’.

Definition 4–2:
The magnitude [ magnItju:d] (or length or modulus [ m6djUl@s]) of the vec-
tor −−→AB is the length of [AB] i.e. AB. The magnitude of a vector −→u is
denoted by ‖−→u ‖.

Definition 4–3:

Let A, B, C and D be four points in the plane. The vectors −−→AB and −−−→CD
are equal iff ABDC is a parallelogram.

−−→
AB = −−−→CD ⇐⇒ ABDC #

Remark: If −−→AB = −−−→CD we can say that those vectors have the same direction
— (AB) ‖ (CD) — the same sense — B and D are on the same side of (AC) —
and the same length.
Proposition 4–4:−−→
AB = −−−→CD iff D is the image under t−−→

AB
of C.

Proposition 4–5:
Let −→u be any vector and let A be any point in the plane. There exists one and
only one point B such that −→u = −−→AB .
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So one can always represent any given vector with a given beginning
point. Obviously one can also represent any given vector with a given end
point.

4.2.2 Sum

Let −→u and −→v be two vectors. There are two ways of defining the sum of the
vectors −→u and −→v depending on how they are represented.
Proposition 4–6: (Triangle law)
If A, B and C are points such that −→u = −−→AB and −→v = −−→BC then

−→u +−→v = −−→AB +−−→BC = −−→AC .

Proposition 4–7: (Parallelogram law)
If A, B and C are points such that −→u = −−→AB and −→v = −−→AC . Let D be the
point such that CABD is a parallelogram. Then

−→u +−→v = −−→AB +−−→AC = −−→AD .

A
B C�!u �!v�!u +�!v

Triangle law A
B

C
D�!u �!v �!u +�!v

Parallelogram law
Fig. 4–1

In fact if CABD is a parallelogram,
−−→
AB +−−→AC = −−→AB +−−−→BD

and we can conclude using the triangle law2.

Definition 4–4:

The null vector −→0 is equal to −−→AA for any point A. For any vector −→u :
−→u +−→0 = −→0 +−→u = −→u .

2which is known in French as ‘la relation de Chasles’.
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Definition 4–5:
−→v is said to be the inverse of −→u iff

−→u +−→v = −→v +−→u = −→0 .

We denote the (additive) inverse of −→u by −−→u .


 Remark: In French one must use the word ‘opposé’.

If A and B are such that −→u = −−→AB then −−→u = −−→BA for
−−→
AB +−−→BA = −−→AA = −→0 and −−→BA +−−→AB = −−→BB = −→0 .

Proposition 4–8: (Properties of the sum)
Let −→u , −→v and −→w be vectors.

• (−→u +−→v ) +−→w = −→u + (−→v +−→w );

• −→u +−→v = −→v +−→u ;

�!u �!v
�!v �!u�!u +�!v�!v +�!u �!u �!v �!w�!u +�!v �!v + �!w(�!u +�!v ) +�!w = �!u + (�!v +�!w )Fig. 4–2

4.2.3 Multiplication by a scalar
Remark: When dealing with vectors, any real number is called a scalar [ skeIl@r].

If −−→AB = −→u , we know how to represent −→u +−→u , −→u +−→u +−→u or even −→u +−→u +
−→u +−→u and it would be agreable to be allowed to write 2−→u , 3−→u and 4−→u instead of
those rather boring long sums. That will be the case at the end of this section the
aim of which is to define the multiplication of a vector by a scalar (or number).



4.2. VECTORS 25

Definition 4–6:
Let −→u be a vector and k be a number. We define the product of −→u by k,
denoted by k−→u , as follows:

• If −→u = −→0 or k = 0 then k−→u = −→0 .

• If −→u 6= −→0 and k > 0 then k−→u has the same direction and sense as −→u
and ‖k−→u ‖ = k × ‖−→u ‖.

• If −→u 6= −→0 and k < 0 then k−→u has the same direction and sense as
−−→u and ‖k−→u ‖ = −k × ‖−→u ‖.

A B

C D

−→u

2.5−→u

E

F G

H
−→v

−0.5−→v

Fig. 4–3

Definition 4–7:
Vectors −→u and −→v are said to be parallel iff there exists a scalar k such that
−→u = k−→v or −→v = k−→u .

When necessary we will write −→u ‖ −→v to denote that vectors −→u and −→v
are parallel.


 Remark: In French one must use the word ‘colinéaire’ in such a case.
For each vector−→u the following equality holds: −→0 = 0−→u . So−→0 is parallel

to any vector.
Proposition 4–9:
Let A, B, C and D be four distinct points.

• −−→AB and −−−→CD are parallel iff (AB) and (CD) are parallel;

• −−→AB and −−→AC are parallel iff C is on (AB).

The last proposition is very useful to prove that three points are collinear.
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Proposition 4–10: (Properties of the multiplication by a scalar)
Let −→u and −→v be vectors and a and b be scalars.

• a (−→u +−→v ) = a−→u + a−→v ;

• (a+ b)−→u = a−→u + b−→u ;

• a (b−→u ) = (a× b)−→u ;

• 0−→u = −→0 ;

• (−1)−→u = −−→u .

4.2.4 Basis

Definition 4–8:
The ordered pair of vectors (−→u ; −→v ) is said to be a basis 3 [ beIsIs] iff −→u
and −→v are not parallel.

Question: Let A and C be two points, L and L′ be two intersecting
lines. Determine B and D such that ABCD is a parallelogram, (AB) is
parallel to L and (AD) is parallel to L′.

Answer: B is the common point of the line parallel to L passing through
A and the line parallel to L′ passing through C. Similarly, D is the common
point of the line parallel to L′ passing through A and the line parallel to L

passing through C.
If (−→u ; −→v ) is a basis, there are three non-collinear points O, U and V

such that −→u = −−→OU and −→v = −−→OV . In that case, (OU) and (OV ) intersect.
Let −→w be a vector. There are two points A and C such that −→w = −−→AC .
Applying the preceding result, we can construct ABCD, parallelogram such
that (AB) ‖ (OU) and (AD) ‖ (OV ). Then −−→AB ‖

−−→
OU and there exists one

(and only one) number x such that −−→AB = x
−−→
OU . By the same reasoning we

obtain a number y such that −−→AD = y
−−→
OV . Then using the parallelogram

law we prove that −→w = x−→u + y−→v .
That result is important and we restate it in the following proposition.

3plur. bases [ beIsi:z]
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Proposition 4–11:
If (−→u ; −→v ) is a basis, for any −→w , there exist two numbers x and y such that
−→w = x−→u + y−→v .
Moreover if −→w = x−→u + y−→v = a−→u + b−→v then x = a and y = b.

Definition 4–9:
If (−→u ; −→v ) is a basis, the coordinates of a vector −→w are the numbers x and
y such that −→w = x−→u + y−→v .
We write −→w : (x ; y ).

Coordinates are sometimes written in a column like this
(
x

y

)
.

Let (−→ı ; −→ ) be a basis, let −→u and −→v be two vectors the coordinates of
which are (u ; u′ ) and ( v ; v′ ) respectively, and let a be a number.

−→u +−→v = (u−→ı + u′−→ ) + (v−→ı + v′−→ )
= (u+ v)−→ı + (u′ + v′)−→ , and

a−→u = a (u−→ı + u′−→ ) = au−→ı + au′−→ .
Therefore we can state the proposition:

Proposition 4–12:
Let −→u : (u ; u′ ) and −→v : ( v ; v′ ).

• −→u = −→0 iff u = 0 and u′ = 0;
• −→u = −→v iff u = v and u′ = v;
• −→u +−→v : (u+ v ; u′ + v′ );
• for each number k, k−→u : ( ku ; ku′ ).

Definition 4–10:
Let (−→ı ; −→ ) be a basis and O be a point in the plane. The ordered triple
[trIpl] (O ; −→ı ; −→ ) is said to be a Cartesian4coordinate system.
Let M be a point in the plane. The coordinates of M — relatively to the
coordinate system (O ; −→ı ; −→ ) — are (x ; y ) iff the coordinates of −−−→OM
are (x ; y ) in the basis (−→ı ; −→ ).

Proposition 4–13:
If A and B have coordinates ( a ; a′ ) and ( b ; b′ ) respectively then −−→AB has
coordinates ( b− a ; b′ − a′ ).

4Cartesian [kA: ti:zi:@n] of or relating to René Descartes (1596–1650) or his work in
philosophy, science, and mathematics.
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Proposition 4–14: (Parallelism criterion)
Let (−→ı ; −→ ) be a basis, −→u and −→v two vectors the respective coordinates of
which are (u ; u′ ) and ( v ; v′ ).
−→u and −→v are parallel iff uv′ − u′v = 0.
Remark: Criterion [kraI tI@rI@n] plur. criteria [kraI tI@r@]: a principle or standard
that a thing is judged by.

The parallelism criterion can be used to determine when a given point is
on a given line. Let (O ; −→ı ; −→ ) be a coordinate system.

Example:

1. Let C be the point the coordinates of which are ( 1 ; 3 ). Let L be the line
passing through A: (−1 ; 2 ) and B: ( 5 ; −1 ). Is C on L? In fact, C is on L

if and only if −−→AB and −−→AC are parallel. We can determine the coordinates
of −−→AB and −−→AC and then use the parallelism criterion (cf. 4–14) to answer
the question.
−−→
AB : ( 5− (−1) ; −1− 2 ) so −−→AB : ( 6 ; −3 ) and −−→AC : ( 1− (−1) ; 3− 2 )
so −−→AC : ( 2 ; 1 ). Now as 6× 1− (−3)× 2 = 12, we can state that C is not
on L.

2. Let A: ( 5 ; −15 ), B: ( 3 ; −8 ), and C: ( 1 ; −1 ). The question is once more:
is C on (AB)?

We have −−→AB : (−2 ; 7 ) and −−→AC : (−4 ; 14 ). As −2 × 14 − 7 × (−4) =
−28 + 28 = 0 we can state that C is on (AB).

3. Let A: ( 5 ; −15 ), B: ( 3 ; −8 ) once again. Let C be a point of (AB) the
abscissa of which is 12. What is the ordinate of C?
Let y be the (unknown) ordinate of C. −−→AB : (−2 ; 7 ) and−−→AC : ( 7 ; y + 15 ).
As C is on (AB), −2× (y + 15)− 7× 7 = 0 that is −2y − 79 = 0 and then
y = −39.5.

4.2.5 Midpoint

One knows that the midpoint [ mIdpOInt] of [AB] is the point I such that I
is on (AB) and is equidistant from A and B.
Proposition 4–15:
I is the midpoint of [AB] iff one of the following equalities holds:

• −−→AI = −−→IB ;

• −−→AI = 1
2
−−→
AB or −−→IB = 1

2
−−→
AB ;
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• −−→AB = 2−−→AI or −−→AB = 2−−→IB ;

• −−→IA +−−→IB = −→0 .
Proposition 4–16:
If A and B have coordinates ( a ; a′ ) and ( b ; b′ ) respectively then the midpoint

of [AB] has coordinates
(
a+ b

2 ; a
′ + b′

2

)
.

Proposition 4–17:
If I is the midpoint of [AB] then for any point M −−−→

MA +−−−→MB = 2−−→MI .
That is easily proved for

−−−→
MA +−−−→MB = −−→MI +−−→IA +−−→MI +−−→IB

= 2−−→MI +−−→IA +−−→IB
= 2−−→MI +−→0 = 2−−→MI qed.

Proposition 4–18:
If I and J are the midpoints of [AB] and [AC] respectively then −−→IJ = 1

2
−−→
BC .

4.3 Equations of lines
Let (O ; −→ı ; −→ ) be a coordinate system in the plane.

Definition 4–11:
Let −→u be a vector and L be a line.
−→u is a direction vector of L iff there exist two points A and B on L such
that −→u = −−→AB .

Proposition 4–19:
If −→u is a direction vector of L then, for any real k different from 0, k−→u is also
a direction vector of L.

Let A and B be two points. Two cases occur: or xA equals xB or not.

In the first case, −−→AB has coordinates ( 0 ; yB − yA ). Let M be a point
with coordinates (x ; y ). M is on (AB) if and only if −−−→AM and −−→AB are
parallel i.e. (yB−yA)(x−xA)−0×(y−yA) = 0 which is equivalent to x = xA.

In that case, line (AB) is parallel to the y-axis.

In the second case, −−→AB has coordinates (xB − xA ; yB − yA ) and xB −
xA 6= 0. Let M be a point with coordinates (x ; y ). M is on (AB) if and



30 CHAPTER 4. ANALYTIC GEOMETRY

only if −−−→AM and −−→AB are parallel i.e.
(yB − yA)× (x− xA)− (xB − xA)× (y − yA) = 0
which is equivalent to
(yB − yA)x− (xB − xA)y + ((xB − xA)yA − (yB − yA)xA) = 0
and as that equation characterises the fact that a point is on (AB) or not,
it is named ‘equation of (AB)’.

That equation is equivalent to
(xB − xA)y = (yB − yA)x + ((xB − xA)yA − (yB − yA)xA) = 0, and as xB −
xA 6= 0, one can write

y = yB − yA

xB − xA

x+ (xB − xA)yA − (yB − yA)xA

xB − xA

which is also an equation of (AB).
In such an equation the coefficient of x is called the slope [sl@Up] or gradi-

ent [ greIdI@nt] of (AB). The number (xB − xA)yA − (yB − yA)xA

xB − xA

is called
the intercept. It is the ordinate of the point at which (AB) cuts the y-axis.
The last equation is said to have the slope-intercept form.

We can sum that up with:
Proposition 4–20:
Let A : (xA ; yA ) and B : (xB ; yB ) be two points in the plane.

• If xA = xB then (AB) has equation x = xA.

• If xA 6= xB then the slope of (AB) is m = yB − yA

xB − xA

If a line L is parallel to the y-axis then all its points have the same
abscissa. That is why such a line has equation x = k for a certain real
number k.

If contrariwise L is not parallel to the y-axis, then there exist two points
which have different abscissae and — it is the second case stated above — it
is the possible to find two real numbers m and p such that L has equation
y = mx+ p. The points A: ( 0 ; p ) and B: ( 1 ; m+ p ) are on L and so the
vector −→u : ( 1 ; m ) is a direction vector of L.

We can now state:
Proposition 4–21: (Equation of a line)
1 Each line parallel to the y-axis has an equation of the form x = a (a ∈ R)
where a is the abscissa of every point on the line.
Each line intersecting the y-axis has an equation of the form y = mx + p with
m and p two real numbers.
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2 The set of the points M : (x ; y ) such that:
• x = k with k a real, is a line parallel to the y-axis.

• y = mx+p is a line which passes through the point with coordinates ( 0 ; p )
and has −→d : ( 1 ; m ) as direction vector.

O x

y

b p: y-inter
ept�!� �!�
�!V 1 m �x �y

slope: m = �y�x
a dire
tion ve
tor: �!V : ( 1 ; m )

Slope-inter
ept equation: y = mx + p
Fig. 4–4

Let a, b and c be real numbers such that a and b are not simultaneously
null. Consider the equation E: ax + by + c = 0. First consider that b = 0.
Then a 6= 0 and so E is equivalent to x = − c

a
so it is an equation of a line

parallel to the y-axis. Then ( 0 ; 1 ) is a direction vector of that line and so
is ( 0 ; a ) for a is not null.

If b 6= 0 then E is equivalent to y = −a
b
x − c

b
. So E is an equation of

line with direction vector
(

1 ; −a
b

)
. We can multiply that vector by −b

to obtain an other direction vector, for b is not null, and we can state the
following proposition.
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Proposition 4–22:
Let a, b and c be three reals such that a and b are not simultaneously null. The
set of the points M : ( x ; y ) such that ax + by + c = 0 is a line with direction
vector −→V : (−b ; a ).

If two lines are parallel they have the same direction vectors. So if ( 1 ; p )
is a direction vector of the first then it is also a direction vector of the second.
If a line does not intersect the y-axis it has a slope p and direction vector
( 1 ; p ). Therefore:
Proposition 4–23:
Let L and L′ be two lines intersecting the y-axis. L and L′ are parallel iff they
have the same slope.

4.4 Orthonormal bases and coordinate sys-
tems

Definition 4–12:
The vectors −→u and −→v are orthogonal [O: T6g@nl] iff one of the following
conditions holds:

1. −→u or −→v is equal to −→0 ;

2. any line with direction vector −→u is perpendicular to any line with
direction vector −→v .

One can write −→u ⊥ −→v to denote the fact that −→u and −→v are orthogonal.

Definition 4–13:
• The basis (−→ı ; −→ )is said to be orthogonal iff −→ı ⊥ −→ .

• The coordinate system (O ; −→ı ; −→ ) is said to be orthogonal iff
(−→ı ; −→ )is an orthogonal basis.

• The basis (−→ı ; −→ )is said to be orthonornal [O:T@ nO:m(@)l] iff
−→ı ⊥ −→ and ‖−→ı ‖ = ‖−→ ‖ = 1.

• The coordinate system (O ; −→ı ; −→ ) is said to be orthonormal iff
(−→ı ; −→ )is an orthonormal basis.



4.4. ORTHONORMAL BASES AND COORDINATE SYSTEMS 33

Proposition 4–24:
Let

(
O ; −→ı ; −→

)
be an orthonormal coordinate system.

• Let A : (xA ; yA ) and B : (xB ; yB ) be two points in the plane. Then

AB =
∥∥∥−−→AB ∥∥∥ =

√
(xB − xA)2 + (yB − yA)2.

• Let −→u : (x ; y ). Then ‖−→u ‖ =
√
x2 + y2.





Chapter 5

Transformations

Beauty is the first test: there is no permanent place in the
world for ugly mathematics.
Godfrey Harold Hardy (1877–1947), English mathematician,
in A Mathematician’s Apology (1940)

A transformation [ trænsf@ meISn] of the plane is a one-to-one mapping of
points of the plane onto points of the plane. It is a kind of process which as-
sociates to each pointM in the plane one and only pointM ′ in the plane. M ′

is the image of M under the transformation; M is the pre-image [pri: ImIdZ]
of M ′. Transformations are one-to-one because every point M ′ has one and
only one pre-image under a transformation.

5.1 Translations and reflections

5.1.1 Translations

Definition 5–1:

The translation [træns leISn] by vector [ vekt@r] −→u is the transformation
which to each point M in the plane associates the point M ′ such that

−−−−→
MM ′ = −→u .

The translation by −→u is denoted by t−→u (read ‘t sub u’) or by t whenever
there is no ambiguity. The image of the point M under t−→u is denoted by
t−→u (M) (read ‘t sub u of M ’).

35
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Remark: The image of the figure S under t−→u is denoted by t−→u (S), whereas
the image of the line (AB) under t−→u is denoted by t−→u (AB) to avoid the more
cumbersome, even if more correct, t−→u ((AB)).

M

M ′

−→u

M ′ = t−→u (M)Fig. 5–1

Proposition 5–1:
Let A and B be two points in the plane. Let −→u be a vector and t be the
translation by −→u . Let A′ = t(A) and B′ = t(B).

•
−−−→
A′B′ = −−→AB so A′B′ = AB;

• t(AB) = (A′B′) and (A′B′) is parallel to (AB);

• if −→u 6= −→0 then there is no invariant [In ve@rI@nt] point under t i.e. for all
point M in the plane t(M) 6= M .
Remark: To each point M the translation by −→0 (null vector) associates M itself.
All the points in the plane are invariant. This translation is said to be the identity
[aI dent@tI] of the plane and usually denoted by Id.

5.1.2 Reflection in a line

Definition 5–2:
Let L be a line. The reflection [rI flekSn] in (or about or through) line L is
the transformation which to each point M in the plane associates the point
M ′ such that L is the midperpendicular of [MM ′] if M is not on L and
such that M ′ = M if M is on L.

The reflection in L is usually denoted by sL.

M M ′

L

M ′ = sL(M)

Fig. 5–2
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Proposition 5–2:
Let A and B be two points in the plane. Let L be a line and s be the reflection
in L. Let A′ = s(A) and B′ = s(B).

• A′B′ = AB;

• if (AB) is perpendicular to L, then (A′B′) = (AB);

• if (AB) is parallel to L, then (A′B′) is also parallel to L.
Proposition 5–3:
Let A and B be two points in the plane. Let L be a line and s be the reflection
in L. Let A′ = s(A) and B′ = s(B).
Assume 1 [@ sju:m] that (AB) is not parallel to L. Let I be their common point.
Then I is invariant under s i.e. s(I) = I. Moreover, I is the only invariant point
on (AB).

5.1.3 Reflection in a point

Definition 5–3:
Let O be a point. The reflection in (or about or through) point O is the
transformation which to each point M in the plane associates the point M ′

such that O is the midpoint of [MM ′].

The reflection in O is usually denoted by SO.

M M ′
O

M ′ = SO(M)
Fig. 5–3

Proposition 5–4:
Let A and B be two points in the plane. Let O be a point and S be the reflection
in O. Let A′ = S(A) and B′ = S(B).

•
−−−→
A′B′ = −−−→AB and consequently,

• A′B′ = AB,

• (A′B′) is parallel to (AB);

• the only invariant point under S is O.

1To assume: take or accept as being true for the purpose of argument.
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5.2 Orientation of the plane, rotations

5.2.1 Orientation of the plane

There are two directions on a circle: the clockwise and the anticlockwise
direction. The anticlockwise direction is chosen to be the positive direction.
The other one is the negative direction.

To give a direction to the plane is to choose the same direction for all
the circles in the plane. The plane is then said to be directed. The plane is
generally assumed to be positively directed.

anticlockwise

+

anticlockwise

−
Fig. 5–4

Definition 5–4:
The triangle ABC is said to be positive if on the circumcircle of ABC one
goes from A to C through B in the positive direction. If ABC is not positive
then it is said to be negative.

A B

C

ABC is positive

Fig. 5–5

Remark: If ABC is positive then BCA and CAB are also positive whereas CBA,
BAC and ACB are negative.

Definition 5–5:
The triangles ABC and DEF are said to have the same sense if they are
both positive or both negative.
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5.2.2 Rotation

Definition 5–6:
The rotation of angle α anticlockwise about O is the transformation which
to each point M 6= O in the plane associates the point M ′ such that:

• if M 6= O then OM = OM ′, OMM ′ is positive and ∠MOM ′ = α;

• if M = O then M ′ = O.

Remark: The rotation of α◦ anticlockwise about O is equal to the rotation of
(360−α)◦ clockwise about O. Therefore, the rotation of 180◦ anticlockwise about
O is equal to the rotation of 180◦ clockwise about O and to the reflection in O.
Proposition 5–5:
Let A and B be two points in the plane. Let O be a point and R be the reflection
of α◦ anticlockwise about O. Let A′ = R(A) and B′ = R(B). Let C be such
that −−→AC =

−−−→
A′B′ . Then:

• A′B′ = AB;

• ∠BAC = α;

• If the angle of R is not null then O is the only invariant point under R.
Proposition 5–6:
Translations and rotations — and therefore reflections in a point — map a
triangle onto a triangle with the same sense. Reflections in a line map a triangle
onto a triangle with the opposite sense.

5.3 Isometries

Definition 5–7:
An isometry 2 [aI s6mItrI] is any transformation from the plane onto itself
that preserves distance.

In other words, if h is an isometry, A and B two points in the plane, A′
and B′ their images under h respectively, then A′B′ = AB.

2from Greek ‘isometria’: equality of measure. The prefix ‘iso’ means ‘equal’ as in
‘isosceles’: having two equal legs. And ‘metria’ is the measure as in ‘geometry’ which is
— originally — the science of the measure of Earth.
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Proposition 5–7:
Translations, reflections and rotations are isometries.

We can state the following useful properties of isometries:
Proposition 5–8:
Let A, B and C be three points in the plane. Let h be any isometry. Let
A′ = h(A), B′ = h(B) and C ′ = h(C).

• the image under h of a circle of center A and radius r, is a circle of center
A′ and radius r;

• the image under h of the segment [AB] is the segment [A′B′];

• if I is the midpoint of [AB] then h(I) is the midpoint of [A′B′];

• the image under h of the line (AB) is the line (A′B′);

• if ∠ABC is right then ∠A′B′C ′ is right;

• if the lines L and L′ are parallel then h(L) and h(L′) are parallel;

• ∠ABC = ∠A′B′C ′.

5.4 Composition

Let h and k be two transformations of the plane. Let M be a point in the
plane. We can first apply h to any point M and, in so doing, obtain point
M∗. Then we can apply k to point M∗ and obtain M ′. The transformation
which maps M onto M ′ is said to be the composite [ k6mp@zIt] of h with k.
We have composed [k@m p@Uzd] those two transformations to obtain a new
one. That operation is called the composition [ k6mp@ zISn].

Usually, the composite of h with k — i.e. h followed by k — is denoted
by k ◦ h (read ‘k circle h’ or ‘k of h’). The first transformation to operate is
written on the right hand side for it is there that we write the point to be
transformed: k ◦ h(M). Here we can write k ◦ h(M) = k(M∗) = M ′.

5.4.1 Composition of two translations

Proposition 5–9:
The composite of the translation by −→u with the translation by −→v is the trans-
lation by −→u +−→v .

t−→v ◦ t−→u = t−→u ◦ t−→v = t−→u +−→v
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The second figure below is a schematic [skI mætIk] representation of the
composition of two translations. The first to operate maps M onto M∗ then
the second maps M∗ onto M ′. The short-cut from M to M ′ represents the
composite of the two preceding translations.

M
M� M 0�!u

�!v
�!u +�!v

M M�
M 0

t�!u t�!vt�!v Æ t�!ut�!u + �!v Fig. 5–6

5.4.2 Composition of two reflections in a point

Proposition 5–10:
The composite of the reflection in O with the reflection in O′ is the translation
by 2
−−−→
OO′ .

SO′ ◦ SO = t2
−−−→
OO′ and SO ◦ SO′ = t2

−−−→
O′O

b

b

bb

b

b

b

b

b

b

b

M
O M� O0 M 0���!OO02���!OO0|

|

| |

| |

M M�
M 0

SO SO0SO 0 Æ SOt2 ���!OO 0 Fig. 5–7

Try your hand at proving that, for any point M ,
−−−−→
MM ′ is truly equal to

2
−−−→
OO′ . Use the figure above and the triangle law (see chap.4 prop. 6).
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5.5 Projections

Definition 5–8:
The orthogonal projection from the plane to line L is the mapping which
to each point M in the plane associates the point M ′ such that M ′ is the
intersection point of L and the perpendicular to L passing through M .

b b

b b

b

bA C A0 = C 0B D B0 = D0
b b b

I J I 0 = J 0L
Fig. 5–8

Remark: A projection is not an isometry for it does not map the plane onto
itself. Moreover a projection does not preserve length. (See figure above where
AB 6= CD and A′B′ = C ′D′.
Proposition 5–11:
A projection preserves the midpoints i.e. if I is the midpoint of [AB] and if
A′, B′ and I ′ are the respective image under the projection on L then I ′ is the
midpoint of [A′B′].



Chapter 6

Solid geometry

Solid geometry or stereometry [ sterI 6mItrI] deals with the objects of the
space such as points, lines, planes and so on.

6.1 Definitions and first properties

6.1.1 Points, lines and planes

Proposition 6–1:
Two points determine a line.

The line passing through the points A and B is denoted by (AB).
Proposition 6–2:
Three non-collinear points determine a plane.

If A, B and C are three non-collinear points, the plane they determine is
denoted by (ABC). A is in the plane (ABC). One can write: A ∈ (ABC).

Points which are in the same plane are said to be coplanar [k@U pleIn@r].
Proposition 6–3:
If A and B are in the plane P then all the points of the line (AB) are in the
plane P. The line (AB) is said to be in the plane P.

Instead of ‘the line L is in the plane P’, one can say ‘the line L is included
in the plane P’.

One writes: L ⊂ P to denote that the line L is in the plane P.
Proposition 6–4:
Two intersecting lines determine a plane. So two intersecting lines are coplanar.
One line and one point not on the line determine a plane.

43
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6.1.2 Parallelism

One uses the sign ∅ to denote an empty set, for example L ∩L′ = ∅ means
that lines L and L′ have no common point.

Definition 6–1:
Two lines are parallel if and only if they are coplanar and do not intersect.

Two parallel lines which are not identical have no common point. If two
parallel lines have a common point then they are identical. So if L and L′

are parallel or L = L′ or L ∩ L′ = ∅. In the space two lines can have no
common point without being parallel. That is the case when they are not
coplanar then they are said to be skew [skju:].

The following figure is a cabinet drawing [ kæbInIt drO:Iŋ] of the cube
ABCDHEFG.

A B C
GHE

D
F

Fig. 6–1

Remark: (AB) and (CG) do not meet and are not parallel. They are not coplanar.
(AC) and (BD) are coplanar but not parallel.

Pictorial [pIk tO:rI@l] drawing shows a ‘picture’ of an object in three di-
mensions, as if one were looking at the object itself. One form of pictorial
drawing is oblique [@ bli:k] drawing. In oblique drawing, a front view of the
object is drawn. From the front view, lines at any angle are drawn. This
angle is usually at 45 degrees, although other angles are used. Cabinet draw-
ing is the most common form of oblique drawing. In this form of oblique
drawing, the sloping lines are at 45 degrees and the lengths along the sloping
lines are drawn to half scale.
Proposition 6–5:
Two parallel lines without a common point determine a plane.
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Definition 6–2:
Two planes are parallel if and only if they are identical or if they have no
common point.

On the figure 6–1, planes (ABC) and (EFG) are parallel.
Proposition 6–6:
If two planes are not parallel they intersect in a line.

In other words, if P and P′ are not parallel then P ∩ P′ is a line.
On the figure 6–1, planes (ABC) and (FEA) intersect in the line (AB).

Proposition 6–7:
Let planes P and Q be parallel. If a plane R intersects P then it intersects Q.
Let then d be P ∩ R and δ be Q ∩ R, d and δ are parallel.

Definition 6–3:
The line L is parallel to the plane P if L is in P or if L and P have no
common point.

Beware! On the figure 6–1, lines (EF ) and (EG) are both parallel to
the plane (ABC) but they do intersect. Parallelism is a relation which is
innocuous when dealing with lines only or with planes only but which is
rather dangerous when dealing with lines and planes at the same time.

P

d

δ

P

dQ

δ

Fig. 6–2

We can now state these usefull propositions:
Proposition 6–8:
If the line δ is parallel to the line d and if the line d is in the plane P then the
line δ is parallel to the plane P. (See figure 6–2 left)
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Proposition 6–9:
If the line δ is parallel to the plane P and to the plane Q and if the two planes
intersect in the line d then the line δ is parallel to the line d. (See figure 6–2
right).

6.1.3 Orthogonality

Definition 6–4:
Two lines of space are said to be perpendicular [ p3:pen dIkjUl@r] iff they
are coplanar and perpendicular in their common plane.

Definition 6–5:
Two lines d and δ are said to be orthogonal [O: T6g(@)n(@)l] iff there exists
a line which is parallel to d and perpendicular to δ.

So orthogonal lines are not necessarily coplanar and do not always in-
tersect. For example, (AB) and (AD) are perpendicular whereas (AB) and
(DH) are orthogonal and do not intersect. (See figure 1)

If the lines are not coplanar some strange events can happen: (AB) is
perpendicular to (AD) which is perpendicular to (DH) but (AB) and (DH)
are not parallel. The theorem which states that if two lines are perpendicular
to a third line then they are parallel, is true only if the three lines are coplanar.

Definition 6–6:
The line d is said to be perpendicular to the plane P iff d is orthogonal to
two intersecting lines of P.

Proposition 6–10:
If the line d is perpendicular to the plane P then d intersects P moreover d is
orthogonal to each line of P.
Proposition 6–11:

• If two lines are perpendicular to the same plane then they are parallel.
• If a line is perpendicular to two planes then the planes are parallel.

Definition 6–7:
Let A and B be two distinct points. The plane P is said to be the perpen-
dicular bisector [baI sekt@r] of [AB] iff P passes through the midpoint of
[AB] and (AB) is perpendicular to P.
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Proposition 6–12:
The perpendicular bisector of [AB] is the set of all the points which are equidis-
tant [ i:kwI dIst@nt] from A and B.

Definition 6–8:
The plane Q is said to be perpendicular to the plane P iff Q contains a line
which is perpendicular to P.





Chapter 7

Algebra

7.1 Introduction

Algebra [ ældZIbr@], like arithmetic [@ rITmetIk], deals with numbers. Alge-
bra is an extension of arithmetic. Both subjects employ the fundamental
operations. In arithmetic you use numbers whose values are known; you op-
erate with these and obtain definite numerical [nju: merIkl] results. Whereas
in algebra, while you may use definite numbers on accasions, you are, in the
main, concerned with general expressions and general results, in which letters
or other symbols represent numbers not named or specified.

There is a rule to determine the area of a rectangle which might be ex-
pressed in the form: ‘the area of a rectangle in square meters is equal to the
product of the length in metres by the breadth in metres’. This rule is short-
ened by employing letters as symbols, to represent the quantities. Thus:

Let l represent the ‘lenght in metres’, b represent the ‘breadth in metres’
and A represent ‘the area in square metres’. With those symbols you can
now write the above rule in the form: A = l × b.

This shortened form shows the rule for finding the area of any rectangle;
it is a general rule, and is called a formula [ fO:mjUl@]. A is said to be the
subject of the formula. In that formula A is expressed in terms of l and b.
You can change the subject of the formula, for example b = A/l.

If you wish to find the numerical value of an algebraic expression for def-
inite numerical values of the letters in it, you should substitute [ s2bstItju:t]
the numerical values for the letters. So, when l = 3 and b = 2, substituting
the given values leads to A = 6.

It frequently happens that an expression, or part of an expression, is to
be operated as a whole. For example, suppose that you wish to write in
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algebraic [ ældZI breIIk] symbols ‘Twice the sum of a and b’. Brackets are
used to enclose the part which is to be operated on as a whole — namely,
a+ b. You write 2 (a+ b).

The expression 3a denotes a multiple of a and the number 3, which indi-
cates the multiple, is called the coefficient [ k@UI fISnt] of a. In 3ab, 3 is the
coefficient of ab, 3a is the coefficient of b and 3b is the coefficient of a.

In a expression, terms which involve the same letter, and differ only in
the coefficients of this letter, are called like terms. Thus in the expression
3a+ 5b− 2a+ 4b, 3a and 2a are like terms.

7.2 Equations
An equation [I kweIZn] is an expression that represents the equality [I kw6l@tI]
of two expressions involving constants [ k6nst(@)nt] or variables [ ve@rI@bl].
For example, the equation A = πr2 equates [I kweIt] the area A of a circle to
the product πr2.

Let x be an unknown number. To solve [s6lv] the equation 5x = 40 is to
find the value(s) of x which satisfy(fies) the equality. Those values are called
the solutions [s@ lu:Sn] of the equation.
Proposition 7–1:

• If the same number is added to, or subtracted from, both sides of an equa-
tion, the two sides will again be equal.

• If both sides of an equation are multiplied or divided by the same number,
the two sides of the new equation will be equal.

7.2.1 Example

Solve the equation: 6x− 5 = 2x+ 9.
The general plan adopted is to collect the terms involving the unknown

on the left (hand) side, and the other terms on the right. Transferring the x
terms from the right side you get:

6x− 2x− 5 = 9.
Transferring the −5,

6x− 2x = 9 + 5
∴ 4x = 14

and x = 7
2 .



7.3. SIMULTANEOUS EQUATIONS 51

The solution is 7
2. The solution set is

{7
2

}
i.e. the set containing 7

2 as its
only element.
Remark: The sign ∴ denotes ‘therefore’.

7.3 Simultaneous equations

Simultaneous [ sIm@l teInI@s] equations are where we have a pair (or more) of
equations that both (or all) need solving at the same time — hence simulta-
neous. There are two main methods: the elimination [I lImI neISn] method
and the substitution [ s2bstI tju:Sn] method.

7.3.1 Elimination method

The technique is initially to eliminate one variable to find a solution to the
other one, and then substitute the found variable to complete the solution.

Example Solve the simultaneous equations
4x+ y = 14 (1)
2x+ y = 8 (2)

To eliminate one of the variables, subtract the equations, botton from
top, which will give 2x = 6, so x = 3.

Now, we substitute this answer in the simplest equation, (2) above, to
give 6+y = 8, so y = 2. Therefore the solution of the simultaneous equations
is x = 3 and y = 2. The solution set is {( 3 ; 2 )}.

Note that you should always check the solution and see that it works with
the other equation.

7.3.2 Substitution method

This is an alternative method for solving simultaneous equations.

Example Solve the simultaneous equations
4x− 2y = 11 (1)
3x+ y = 12 (2)
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Then from equation (2), y = 12− 3x. Now substitute this into equation
(1) to give

4x− 2 (12− 3x) = 11
4x− 24 + 6x = 11

10x = 35
x = 3.5

and we are where we arrived at before. We now need to substitute x = 3.5
into one of the equations to complete the solution. So y = 12 − 3 × 3.5 =
12− 10.5 = 1.5 and the solution set is {( 3.5 ; 2.5 )}.

7.4 Inequalities
Inequations are often referred to as inequalities also. They are solved as
equations, except that when you have to multiply or divide both sides by a
negative number the inequality sign turns round. For example, if we have
−2 < 5, then 2 > −5.

Example Find the range of value for which 5x+ 3 > 6(x− 2).
You have to expand the brackets first to give 5x + 3 > 6x − 12. Then

transferring the x term from the right hand side and the 3 from the left hand
side, you obtain 5x− 6x > −12− 3 and so −x > −15. You have to multiply
both sides by −1 and so x < 15. The solution set is the interval ]−∞ ; 15 [ .



Chapter 8

Statistics

There are three kinds of lies: lies, damned lies and statistics.
Attributed to Benjamin Disraeli1
Mark Twain (1835–1910), American writer,
in Autobiography (1924)2

Statistics : [st@ tIstIks] 1 (usually treated as singular) the science of col-
lecting and analysing numerical [nju: merIkl] data, especially in or for large
quantities, and usually inferring proportions in a whole from proportions in
a representative sample. 2 any systematic collection or presentation of such
facts.

8.1 Introduction

Every day we make decisions that may be personal, business related, or
of some other kind. Usually these decisions are made under conditions of
uncertainty. Many times, the situations or problems we face in the real
world have no precise or definite solution.

Statistical [st@ tIstIkl] methods help us to make scientific and intelligent
decisions in such situations. Decisions made by using statistical methods
are called educated guesses. Decisions made without using statistical (or
scientific) methods are pure guesses and, hence, may prove to be unreliable.

Like almost all fields of study, statistics has two aspects: theoretical [TI@-
1Benjamin Disraeli [dIz reIlI] (1804–1881) 1st Earl of Beaconsfield [ bi:k@nzfi:ld],

British Conservative politician and novelist; Prime Minister, 1868, 1874–1880.
2‘Mark Twain’ is the pseudonym [ sju:d@nIm] of Samuel Langhorne Clemens.
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retIkl] and applied. Theoretical or mathematical statistics deals with the
development, derivation, and proof of statistical theorems, formulas, rules,
and laws. Applied statistics involves the applications of those theorems,
formulas, rules, and laws to solve real-world problems.

Broadly speaking, applied statistics can be divided into two areas: de-
scriptive [dI skrIptIv] statistics and inferential [ Inf@ renSl] statistics. Descrip-
tive statistics consists of methods for organising, displaying, and describing
data by using tables, graphs, and summary [ s2m@rI] measures.

Suppose we have information on the test scores of students enrolled in
a statistics class. In statistical terminology, the whole set of numbers that
represents the scores of students is called a data 3 [ deIt@] set, the name of
each student is called an element [ elIm@nt] or individual [ IndI vIdZU@l], and
the score of each student is called an observation [ 6bz@ veISn].

A data set in its original form is usually very large. Consequently, such
data set is not very helpful in drawing conclusions or making decisions. It is
easier to draw conclusions from summary tables and diagrams [ daI@græm]
than from the original version of a data set. Therefore, we reduce data
to a manageable size by constructing tables, drawing graphs, or calculating
summary measures such as averages [ æv(@)rIdZ].

In statistics, the collection of all elements of interest is called a population
or universe. The selection of a few elements from this population is called a
sample [ sA:mpl].

A major portion of statistics deals with making decisions, inferences, pre-
dictions, and forecasts about populations based on results obtained from
samples. The area of statistics that deals with such decision-making proce-
dures is referred to as inferential statistics. This branch of statistics is also
called inductive [In d2ktIv] reasoning [ ri:z(@)nIŋ] or inductive statistics.

A population consists of all elements — individuals, items [ aIt@m], or
objects — whose characteristics are being studied. The population that is
being studied is also called the target [ tA:gIt] population.

The collection of information from the elements of a population or a
sample is called a survey [ s3:veI]. A survey that includes every element of
the target population is called a census [ sens@s]. Often the size of the target
population is large. Hence, in practice, a census is rarely taken because it
is very expensive and time consuming. In many cases, it is even impossible
to identify each element of the target population. Usually, to conduct a
survey, we select a sample and collect the required information from the
elements included in that sample. We then make decisions based on this
sample information. Such a survey is called a sample survey.

3plural of datum [ deIt@m].
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The purpose of conducting a sample survey is to make decisions about the
corresponding population. It is important that the results obtained from a
sample survey closely match the results that we would obtain by conducting
a census. Otherwise, any decision based on a sample survey will not apply
to the corresponding population.

A sample that represents the characteristics of the population as closely
as possible is called a representative [ reprI zent@tIv] sample.

A sample may be random [ rænd@m] or non-random. In a random sample,
each element of the population has some chance of being included in the
sample. However, in a non-random sample this may not be the case. If the
chance of being selected is the same for each element of the population, the
sample is called a simple random sample.

A sample may be selected with or without replacement. In sampling with
replacement, each time we select an element from the population, we put it
back in the population before we select the next one. Thus, in sampling with
replacement, the population contains the same number of items each time
a selection is made. Consequently, we may select the same item more than
once in such a sample.

Sampling without replacement occurs when the selected element is not
replaced in the population. In this case, each time we select an item, the
size of the population is reduced by one element. Thus, we cannot select the
same item more than once. Most of the times, samples taken in statistics are
without replacement.[14]

8.1.1 Basic terms

An element or member of a sample or population is a specific subject or
object (for example, a person, firm, item, state, or country) about which
the information is collected. A variable is a characteristic under study that
assumes different values for different elements. The value of a variable for an
element is called an observation or measurement. A data set is a collection
of observations on one or more variables.

8.1.2 Types of variables

A variable that can be measured numerically [nju: merIk(@)lI] is called a
quantitative [ kw6ntIt@tIv] variable. The data collected on a quantitative
variable are called quantitative data.
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Incomes, heights, gross sales, prices of homes, number of cars owned, and
accidents are examples of quantitative variables since each of them can be
expressed numerically. Such quantitative variables can be classified as either
discrete [dI skri:t] variables or continuous [k@n tInjU@s] variables.

The values that a certain quantitative variable can assume may be count-
able or not. For example, we can count the number of cars owned by a
family but we cannot count the income of the family. The variable the val-
ues of which are countable is called a discrete variable. There are no possible
intermediate values between consecutive values of a discrete variable.

A continuous variable can assume any numerical value over a certain
interval or intervals.

The time taken to complete an examination is an example of a contin-
uous variable because it can assume any value, let us say, between 30 and
60 minutes. The time taken may be 42.6 minutes, 42.67 minutes, or 42.674
minutes. (Theoretically, we can measure time as precisely as we want.) Simi-
larly, the height of a person can be measured to the tenth of an inch or to the
hundredth of an inch. However, neither time nor height can be counted in a
discrete fashion. Note that any variable that involves money is considered a
continuous variable.

Variables that cannot be measured numerically but can be divided into
different categories [ kæt@g@rI] are called categorical [ kæt@ g6rIkl] or quali-
tative [ kw6lIt@tIv] variables. The data collected on such variables are called
qualitative data.

Based on the time over which they are collected, data can be classified as
either cross-section or time-series data. Data collected on different elements
at the same point of time or for the same period of time are called cross-
section data. The information on incomes of 100 families for the year 1994
is an example of cross-section data.

Data collected on the same element for the same variable at different
points in time or for different periods of time are called time-series data.
Information on GB exports for the years 1975 to 1993 is an example of time-
series data.

When data are collected, the information obtained from each member
of a population or sample is recorded in the sequence in which it becomes
available. This sequence of data recording is random and unranked. Such
data are called raw [rO:] data.
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8.2 Organising and graphing qualitative data

8.2.1 Frequency distributions

A sample of 100 students enrolled at a university were asked what they
intended to do after graduation. Forty-four said they wanted to work for
private companies; 16 said they wanted to work for the federal government;
23 wanted to work for state or local governments; and 17 intended to start
their own businesses.

The table 1 lists the type of employment and the number of students who
intend to engage in each type of employment. In this table, the variable is
the type of employment, which is a qualitative variable. The categories listed
in the first column of the table are mutually exclusive. In other words, each
of the 100 students belongs to one and only one of these categories.

The number of students who belong to a certain category is called the fre-
quency [ fri:kw@nsI] of this category. A frequency distribution [ dIstrI bju:Sn]
exhibits how the frequencies are distributed over various categories. The next
table is called a frequency distribution table or simply a frequency table.

Table 1
Type of employement Number of students
Private companies 44
Federal government 16
State or local government 23
Own business 17

Sum = 100

Definition 8–1:
A frequency distribution for qualitative data lists all categories and the
number of elements that belong to each of the categories.

8.2.2 Relative frequency and percentage distributions

Definition 8–2:
The relative frequency of a category is obtained by dividing the frequency
of that category by the sum of all frequencies.
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Thus, the relative frequency shows what fractional part or proportion
of the total frequency belongs to the corresponding category. A relative
frequency distribution lists the relative frequencies for all categories.

Definition 8–3:
The percentage for a category is obtained by multiplying the relative fre-
quency of that category by 100. A percentage distribution lists the percent-
ages for all categories.

A sample was taken of 25 high school seniors who were planning to go
to college. Each of the students was asked which of the following majors
he or she intended to choose: business, economics, management information
systems (MIS), behavioral sciences (BS), other. The responses are given in
the table below.

Table 2
Major Frequency (f) Relative

Frequency Percentage
Business 6 .24 24
Economics 3 .12 12
MIS 6 .24 24
BS 2 .08 8
Others 8 .32 32

sum = 25 sum = 1.00 sum = 100

8.2.3 Graphical representation of qualitative data

All of us have heard the saying ‘a picture is worth a thousand words’. A
graphic display can reveal at a glance the main characteristics of a data
set. The bar graph [ bA: grA:f] and the pie chart [ paI tSA:t] are two types of
graphs used to display qualitative data.

Bar graph

To construct a bar graph (also called a bar chart), we mark the various
categories on the horizontal axis as in figure 8–1. Note that all categories are
represented by intervals of the same width.

We mark the frequencies on the vertical axis. Then we draw one bar for
each category such that the height of the bar represents the frequency of the
corresponding category. We leave a small gap between adjacent bars.
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The bar graphs for relative frequency and percentage distributions can
be drawn simply by marking the relative frequencies or percentages, instead
of the frequencies, on the vertical axis.

Pie chart

A pie chart is more commonly used to display percentages, although it can
be used to display frequencies or relative frequencies. The whole pie (or
circle) represents the total sample or population. The pie is divided into
different portions that represent the percentages of the population or sample
belonging to different categories.

Bus

Eco

MIS

BS
Ot

Pie chart for the

frequency distribution

of Table 2

24%

12%

24%

8%
32%

Fig. 8–2

8.3 Organising and graphing quantitative data
The next table gives the heights (in inches) of a random sample of 30 National
Basketball Association players. The first column of this table lists the classes,
which represent the quantitative variable, the height.
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For quantitative data, an interval that includes all the values that fall
within two numbers, the lower and upper limits (or class boundaries [ baUn-
d(@)rI]) is called a class. Note that the classes always represent a variable. As
we can observe, the classes are non-overlapping; that is, each value belongs
to one and only one class. We have to understand that 72–74 stands for
[ 72 ; 75 [ as the lower limit of the next class is 75. So the boundaries of the
first class are 72 and 75.

The third column in the table lists the number of players who have their
heights within each class. For example, three players have an height of 72
inches to less than 75 inches. The numbers listed in the third column of this
table are called the frequencies. The sum of all the frequencies is denoted by
Σf . The frequencies are denoted by f .

Table 3
Height class Frequency

(in inches) midpoint (f)
72–74 73.5 3
75–77 76.5 5
78–80 79.5 7
81–83 82.5 10
84–86 85.5 5

Σf = 30

An array is an arrangement of raw numerical data in ascending or de-
scending order of magnitude. When summarising large masses of raw quan-
titative data, it is often useful to distribute the data into classes and to
determine the number of individuals belonging to each class, called the class
frequency. A tabular arrangement of data by classes together with the corre-
sponding class frequency is called a frequency distribution, or frequency table.
Data organised and summarised in that way are often called grouped data.
The data presented in table 3 are an illustration of a frequency distribution
table for quantitative data.

A symbol defining a class, such as 72–74 or [ 72 ; 75 [ , is called a class
interval. The class width (or class size) is equal to the difference between
the two class boundaries. Here we have 75− 72 = 3 so the width of the first
class is 3. We can observe that all classes in table 3 have the same size.

The class mark is the midpoint of the class interval. It is also called the
class midpoint. For purposes of further mathematical analysis, all observa-
tions belonging to a given class interval are assumed to coincide with the



8.3. ORGANISING AND GRAPHING QUANTITATIVE DATA 61

class mark. The mark is obtained by halving the sum of the two boundaries
of a class. So the midpoint of the first class is 75 + 72

2 = 73.5.

8.3.1 Constructing frequency distribution table

While constructing a frequency distribution table, we have to make the fol-
lowing three decisions:

• Number of classes Usually the number of classes for a frequency dis-
tribution table varies from 5 to 20, depending mainly on the number of
observations in the data set. It is preferable to have more classes as the size
of a data set increases.

• Class width Although it is not uncommon to have classes of different
sizes, most of the time, it is preferable to have the same width for all classes.
To determine the class width when all classes are of the same size, first find
the difference between the largest and the smallest values in the data. Then
the approximate width of a class is obtained by dividing that difference by
the number of desired classes.

• Lower limit of the first class or the starting point Any convenient number,
which is equal to or less than the smallest value in the data set, can be used
as the lower limit of the first class.

8.3.2 Graphing grouped data

Grouped data can be displayed by using a histogram [ hIst@ græm] or a poly-
gon [ p6lIg@n].

Histograms

To draw a histogram, we first mark classes on the horizontal axis. Class
boundaries are used to mark classes on the horizontal axis. Next, we draw a
bar for each class so that its area represents the frequency of this class. The
bars in a histogram are drawn adjacent to each other without leaving any
gap between them.
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Polygons
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A polygon is another device that can be used to present quantitative data
in graphic form. To draw a frequency polygon, we first mark a dot above the
midpoint of each class at a height equal to the frequency of that class. Next,
we mark two more classes, one at each end, and mark their midpoints. These
two classes have zero frequencies. In the last step, we join the adjacent dots
with straight lines. The resulting line graph is called a frequency polygon or
simply a polygon.

A polygon with relative frequencies (respectively: percentages) marked on the
vertical axis is called a relative frequency (respectively: percentage) polygon.

The symbol ‘ ’ used in the horizontal axis of figure 8–4 represents a
break, called the truncation [tr2ŋ keISn], in the axis. It indicates that the
entire axis is not shown in this figure. As can be noticed, the zero to 69
portion of the axis has been omitted.
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Warning

Describing data using graphs helps to give us insights into the main charac-
teristics of the data. However, graphs, unfortunately, can also be used, in-
tentionally or unintentionally, to distort the facts and to deceive the reader.
Following are two ways of manipulate graphs to convey a particular opinion
or impression.

• Changing the scale either on one or on both axes, that is, shortening or
stretching one or both axes.

• Truncating the frequency axis, that is, starting the frequency axis at a
number greater than zero.

When interpreting a graph, we should be very cautious. We should ob-
serve carefully whether the frequency axis has been truncated or whether any
axis has been unnecessarily shortened or stretched.

8.3.3 Cumulative frequency distributions

Consider the example about the heights of 30 NBA players. Suppose we want
to know how many players are 80 inches tall or shorter. Such a question can
be answered using a cumulative [ kju:mjUl@tIv] frequency distribution. Each
class in a cumulative frequency distribution table gives the total number of
values that fall below a certain value. A cumulative frequency distribution
is constructed for quantitative data only.

Table 4
Height Cumulative

(in inches) Frequency
72–74 3
75–77 8
78–80 15
81–83 25
84–86 30

The cumulative relative frequencies are obtained by dividing the cumu-
lative frequencies by the total number of observations in the data set. The
cumulative percentages are obtained by multiplying the cumulative relative
frequencies by 100.
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Ogives

When plotted on a diagram, the cumulative frequencies give a curve that is
called an ogive [ @UdZaIv]. To draw the ogive, the variable (height) is marked
on the horizontal axis and the cumulative frequencies on the vertical axis.
Then, the dots are marked above the upper boundaries of various classes at
the heights equal to the corresponding cumulative frequencies. The ogive
is obtained by joining consecutive points with straight-line segments. Note
that the ogive starts at the lower boundary of the first class and ends at the
upper boundary of the last class.

72 75 78 81 84 87Height (in
hes)06
1218
2430
Frequen
y Ogive for thefrequen
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b

Fig. 8–5

8.4 Measures of central tendency

We often represent a data set by numerical summary measures, usually called
the typical values. A measure of central tendency or average gives the centre
of a histogram or a frequency distribution curve. There are three main types
of average — the mean, the mode, and the median; and the first type may
be subdivided into arithmetic mean, geometric mean, and harmonic mean.
These are all different types of representative value and, being recognised as
such, the noun average is rarely used in statistical work when referring to
actual values.
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8.4.1 Mean

The simplest form of mean [mi:n] is the arithmetic [ ærIT metIk] mean. It
is the most frequently used measure of central tendency [ tend@nsI]. It is the
easiest to calculate. One just adds up all the values, divides by the total
number of values, and the result is the arithmetic mean.

To calculate the mean for grouped data, first find the midpoint of each
class and then multiply the midpoints by the frequencies of the corresponding
classes. The sum of those products gives an approximation for the sum of all
values. To find the value of the mean, divide the sum by the total number
of observations in the data.

8.4.2 Outliers or extreme values

Values that are very small or very large relative to the majority of the values
in a data set are called outliers [ aUt laI@r] or extreme values.

A major shortcoming of the mean as a measure of central tendency is
that it is very sensitive to outliers.

8.4.3 Median

The median [ mi:dI@n] is the value of the middle term in a data set that has
been ranked in increasing order.

To determine the median for ungrouped data:

• if the number of observations n in a data set is odd, then the median
is given by the value of the middle term in the ranked data that is the
(n+ 1/2)th value;

• if the number n is even, then the median is given by the average of the
values of the two middle terms the (n/2)th and (n/2 + 1)th.

To determine the median of grouped data we use the ogive. The median
is the abscissa of the point the ordinate of which is half of the total number
of observations.
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8.4.4 Mode

Mode is a French word that means fashion — an item that is most popular or
common. In statistics, the mode [m@Ud] represents the most common value
in a data set; it is the value that occurs with the highest frequency in a data
set.

8.4.5 Measure of dispersion

The range [reIndZ] is the simplest measure of dispersion [dI sp3:Sn]. It is the
difference between the largest and the smallest values in a data set.

8.5 Samples
The basic idea of sampling is proba-

bly almost as old as mankind and, for all
we know, possibly preceded it since some
lower animals appear to have the knack of
tasting a proportion of the food offered to
them and of rejecting the whole meal on the
strength of the one portion tasted! Sam-
pling is based on choice and selectiveness.
Early man had but few possessions and he
did not need to count them nor to compare
one with another. But as soon as the barter
system began to assume larger scale propor-
tions, the two parties to the exchange, say,
of coconuts and local barley-wine, would not
have tasted every coconut and every drop of
wine. Instead they would have tested a few

units of each commodity and would have as-
sumed that the rest of the units were up to
the standard of the sample units which they
had selected. The purchaser of the wine,
for instance, could not have tested all the
wine without becoming highly intoxicated
and probably insensible to the whole trans-
action. He might, perhaps, have tasted a
little from each skin of wine, but in doing
this he would still have been sampling on
the theory that the remainder of the wine
in each skin was exactly the same as the
small amounts tasted, although his judge-
ment might have suffered as he proceeded.

It is equally impossible today to inspect
every item separately. Electric light bulbs,
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for instance, are tested for the longevity of
useful life by lighting them until the ele-
ments break. If every bulb was tested in this
way, there would not be any bulbs left to put
into the lampholders at home. One hun-
dred per cent inspection like this destroys
the article, and some form of sampling is
necessary to avoid this wholesale destruc-
tion while at the same time producing evi-

dence that the bulk from which the sample
is drawn is being maintained at a specified
level of quality. Other populations are so
large that it would be physically impossible
to gather data in respect of every member.
Correct sampling methods therefore make it
possible to gather information which would
otherwise be unobtainable.[24]

We are often interested in knowing the proportion of a population that
possesses a certain characteristics, for example, the proportion of English-
men who own an electric kettle. The population proportion, denoted by p, is
the ratio of the number of elements in a population with a specific charac-
teristic (here electric kettle owners) to the total number of elements in the
population. As the population is too large to be studied directly, we may
use a sample. Let n be the sample size, that is the number of elements in
the sample. The sample proportion, denoted by p̂ (read p hat) is the ratio of
number of elements in the sample with a specific characteristic to the total
number of elements in the sample. The value of p̂ is an estimate of p.

For different samples may lead to different values of p̂, we say that p̂ is
subject to variability. Nonetheless, if the sample fulfils certain conditions,
p̂ is a good approximation of p. More precisely, if the sample is a simple
random sample and if its size is great enough (not less than 25) then:
Proposition 8–1:
More than 93% of all the possible samples lead to a value of p̂ which is between
p− 1√

n
and p+ 1√

n
.

Practically a random sample is considered as simple if the population is
large enough or if the sampling is made without replacement.

Some consequences follow immediately:
• The bigger the sample, the more precise the estimate.

• p− 1√
n
≤ p̂ ≤ p+ 1√

n
⇐⇒ p̂− 1√

n
≤ p ≤ p̂+ 1√

n
.

The second consequence is of pratical interest for when we perform a
sampling the population proportion p is not known. What we know, after
the survey, is the value of p̂. We can then be 93% certain that the true

value of p is somewhere in
[
p̂− 1√

n
; p̂+ 1√

n

]
which is known as the 93%

confidence interval, 93% being the confidence level.





Chapter 9

Functions

Still glides the Stream, and shall for ever glide;
The Form remains, the Function never dies.
William Wordsworth (1770–1850), English poet,
in The River Duddon (1820)

9.1 Definitions

Definition 9–1:

A function [f2ŋkSn] from D to R is a rule that maps each real of a certain
subset D of R onto one and only one real.

Let f be a function from D to R. Let x be a real belonging to D. The
unique real associated to x by f is denoted by f(x) ‘f of x’ and called the
image [ ImIdZ] of x under f . In such a case, x is called the independant
variable [ IndI pend@nt ve@rI@bl]. The set D is called the domain [d@U meIn]
of f . If y = f(x), then x is the pre-image [pri: ImIdZ] or counterimage
[ kaUnt@ rImIdZ] of y under f and y is called the dependant [dI pend@nt]
variable.

To denote a function, we write f : D −→ R; x 7−→ f(x) ‘f maps D to
R and x onto f(x)’. For example, let f be the function f : [ 0 ; 10 ] −→ R;
x 7−→ x2 + 4. The image of 2 under f is f(2) = 22 + 4 = 8. So 8 is the image
of 2 under f and 2 is a pre-image of 8 under f . We can also say that 8 is the
value of f for the argument [ A:gjUm@nt] 2.

69
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9.2 Graphs of functions

Definition 9–2:
Let f be a function from D to R. The graph of f in the coordinate system
(O ; −→ı ; −→ ) is the set, denoted F, of points M the coordinates of which
are (x ; f(x) ) with x ∈ D. The curve F is said to have equation y = f(x).

Proposition 9–1:
Let M : (x ; y ) be a point in the plane. Let f be a function from D to R and
F its graph.

M ∈ F ⇐⇒ x ∈ D and y = f(x).

9.3 Increasing, decreasing functions
In this section the domain of the function f is an interval I.

Definition 9–3:
Let f : I → R, x 7−→ f(x). f is increasing [In kri:sIŋ] on I iff for all pair
( a ; b ) of numbers belonging to I a < b implies f(a) < f(b).

So an increasing function is ‘order-preserving’: the images f(a) and f(b)
are in the same order as the arguments a and b.

Example:

1. Let f : R → R, x 7−→ 4x + 5. Let a and b be two real numbers. a < b
implies 4a < 4b which in turn implies 4a+ 5 < 4b+ 5 i.e. f(a) < f(b). So f
is increasing on R.

2. Let f : R → R, x 7−→ x2 − 6x. First we have f(1) = −5 and f(2) = −8 so
1 < 2 and f(1) > f(2). That proves that f is not increasing on R.
We have x2 − 6x = (x − 3)2 − 9. So if 3 ≤ a < b then 0 ≤ a − 3 < b − 3
and, as the square of two positive numbers are ordered as the numbers,
(a− 3)2 < (b− 3)2 which implies (a− 3)2− 9 < (b− 3)2− 9 i.e. f(a) < f(b).
We have proven that f is increasing on [ 3 ; +∞ [ .

Definition 9–4:
Let f : I → R, x 7−→ f(x). f is decreasing [di: kri:sIŋ] on I iff for all pair
( a ; b ) of numbers belonging to I a < b implies f(a) > f(b).
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So a decreasing function is ‘order-reversing’: the images f(a) and f(b)
are in the reverse order as the arguments a and b.

Example:

1. Let f : R → R, x 7−→ −3x + 8. Let a and b be two real numbers. a < b
implies −3a > −3b which in turn implies −3a+8 > −3b+8 i.e. f(a) > f(b).
So f is decreasing on R.

2. Let f : R→ R, x 7−→ x2 − 6x.

We have proven that f is increasing on [ 3 ; +∞ [ .

Let us cast a glance at the behaviour of f on ]−∞ ; 3 ]. a ∈ ]−∞ ; 3 ] iff
a ≤ 3. Let us consider two numbers a and b in ]−∞ ; 3 ] such that a < b.
Then a < b ≤ 3 so a− 3 < b− 3 ≤ 0 and (a− 3)2 > (b− 3)2 which implies
(a− 3)2− 9 > (b− 3)2− 9 i.e. f(a) > f(b). So f is decreasing on ]−∞ ; 3 ].

Definition 9–5:
Let f : I → R, x 7−→ f(x).

1. f is non-increasing on I iff, for all pair ( a ; b ) of numbers belonging
to I, a < b implies f(a) ≥ f(b).

2. f is non-decreasing on I iff, for all pair ( a ; b ) of numbers belonging
to I, a < b implies f(a) ≤ f(b).

9.4 Maxima, minima, turning points

In this section too the domain of the function f is an interval I.

Definition 9–6:
f has a maximum [ mæksIm@m] at a on I iff, for all x ∈ I, f(x) ≤ f(a).
Then f(a) is the maximum of f on I.
f has a minimum [ mInIm@m] at a on I iff, for all x ∈ I, f(x) ≥ f(a). Then
f(a) is the minimum of f on I.

Remark: The word ‘maximum’ [resp. ‘minimum’] has two plurals: ‘maximums’
[resp. ‘minimums’] and ‘maxima’ [ mæksIm@] [resp. ‘minima’].

Maxima and minima are also called turning points.
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9.5 Linear functions

Definition 9–7:
Let a and b be two reals. The function f : R −→ R; x 7−→ f(x) is linear
[ lInI@r] iff f(x) = ax+ b.

Remark: If f is linear with f(x) = ax + b and if a = 0 then the function is
constant [ k6nst@nt] i.e. all the reals have the same image b.
Proposition 9–2:
If f is a non-constant linear function, then the increment of y is proportional to
the increment of x.
Proof:
Let f be a non-constant linear function such that f(x) = ax + b. Let x and x′ be two
reals. The increment of the independent variable is x′−x. The increment of the dependent
variable is f(x′)− f(x).
We have f(x′)− f(x) = (ax′ + b)− (ax+ b) = ax′ + b− ax− b = ax′ − ax = a (x′ − x).

Proposition 9–3: (converse of the preceding)
Let f be a function from R to R. If the increment of y is proportional to the
increment of x, then f is a linear function.
Proposition 9–4:
The graph of a linear function is a line.
Proposition 9–5: (Behaviour of a linear function)
Let a and b be two reals. Let f be defined by f : R −→ R; x 7−→ f(x) = ax+b.

• If a = 0 then f is constant on R.
• If a > 0 then f is increasing on R.
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• If a < 0 then f is decreasing on R.

 Remark: In French the linear functions are called ‘affine’. For a function f to

be ‘linéaire’, f has to map x onto ax with a a constant real. Such a function has
a graph which is a line passing through O the origin of the plane.
In English too it is possible to use the words ‘affine’ [@ faIn] and ‘linear’ with the
same meanings as in French but it is usually so just in University texts.

9.6 The ‘square’ function
Let s be defined by s : R −→ R; x 7−→ x2.
Proposition 9–6:
The function s is decreasing on ]−∞ ; 0 ] and increasing on [ 0 ; +∞ [ .
Proof:
Let a and b be two reals.
First let a and b be such that 0 ≤ a < b. Let us determine the sign of s(b)− s(a).

s(b)− s(a) = b2 − a2 = (b− a) (b+ a)

Now, as a < b, b− a > 0 and, as 0 ≤ a and 0 < b, b+ a > 0 therefore s(b)− s(a) > 0 i.e.
s(a) < s(b).
So, s is increasing on [ 0 ; +∞ [ .
Secondly let a and b be such that a < b ≤ 0. Then, as a < b, b− a > 0 and, as a < 0 and
b ≤ 0, b+ a < 0 therefore s(b)− s(a) < 0 i.e. s(a) > s(b).
So, s is decreasing on ]−∞ ; 0 ]. qed

We can sum up the behaviour of the ‘square’ function with the following
table: xs �1 +100 Fig. 9–2
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As consequences of the preceding proposition, we can state:
Proposition 9–7:

• The ‘square’ function has a minimum at 0. That minimum is 0.

• If a and b are negative reals then a < b is equivalent to a2 > b2.

• If a and b are positive reals then a < b is equivalent to a2 < b2.

The graph S of the function s is a parabola [p@ ræb@l@] with vertex at O
and the y-axis as line of symmetry. So S is invariant under the reflection in
the y-axis.

O �!��!�

y = x2
Fig. 9–3

Proposition 9–8:
Let a be a positive real (a > 0). Then:

• x2 = a⇐⇒ x =
√
a or x = −

√
a i.e. the equation x2 = a has exactly two

solutions which are
√
a and −

√
a;

• x2 ≤ a⇐⇒ x ∈
[
−
√
a ;
√
a
]
;

• x2 ≥ a⇐⇒ x ∈
]
−∞ ; −

√
a
]
∪
[√

a ; +∞
[
.
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x > pa and x2 > ax < �pa and x2 > a Fig. 9–4

9.7 The ‘inverse’ function

Let i be defined by i : R∗ −→ R; x 7−→ 1
x
.

Proposition 9–9:
The function i is decreasing on ]−∞ ; 0 [ and on ] 0 ; +∞ [ .
Proof:
Let a and b be two reals not equal to 0. We have

i(b)− i(a) = 1
b
− 1
a

= a− b
ab

now, if a < b then a− b < 0, therefore the sign of i(b)− i(a) is minus times the sign of ab.
If, on one hand, a < b < 0 then ab > 0 and i(b) − i(a) > 0, and if, on the other hand,
0 < a < b then ab > 0 again and i(b) − i(a) > 0. Therefore whether a and b are both
negative or positive, if a < b then i(a) > i(b) i.e. i is decreasing on both ]−∞ ; 0 [ and
] 0 ; +∞ [ . qed

We can sum up the behaviour of the ‘inverse’ function with the following
table: xi �1 +10

Fig. 9–5
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Proposition 9–10:

• If a and b are negative (a < 0 and b < 0) then a ≤ b⇐⇒ 1
a
≥ 1
b
.

• If a and b are positive (a < 0 and b < 0) then a ≤ b⇐⇒ 1
a
≥ 1
b
.

The graph I of the function i is an hyperbola [haI p3:b@l@] with the x-axis
and the y-axis as ‘axes’ or ‘asymptotes’. I is invariant under the reflection in
0.

O �!��!� y = 1x
Fig. 9–6

9.8 The trigonometric functions

Among the trigonometric [ trIg@n@ metrIk] functions or circular [ s3:kjUl@r]
functions are the sine [saIn] and the cosine [ k@UsaIn].



9.8. THE TRIGONOMETRIC FUNCTIONS 77

9.8.1 Definitions
Let (O ; −→ı ; −→ ) be a coordinate sys-
tem in the plane. Let I and J be points
in the plane such that −−→OI = −→ı and−−→
OJ = −→ . Let the triangle IOJ be
positive. Let C be a directed circle with
center O and radius 1 and D be the
tangent to C at I. Let A be a point
on D such that IA = 1 and A and J
are on the same side of (OI). Let x
be a real. There exists one and only
one point M on D such that x is the
abscissa of M relatively to ( I ; A ). If
we wind D round C as shown on the
figure, M coincides with a point m on
C. Then

×

×

Mm O �!��!�
�2:1
0:81:6

Definition 9–8:

• The cosine of x, denoted by cosx, is the abscissa of m in (O ; −→ı ; −→ ).

• The sine of x, denoted by sin x, is the ordinate of m in (O ; −→ı ; −→ ).

The function sine is the function which associates sin x to any real x. The
function cosine is the function which associates cosx to any real x.

9.8.2 Graphs

O �!��!� y = sinx| ||| �2 ��� ��2
Fig. 9–7

Remark: We observe, and we could prove, that the graph of sine is symmetrical
about O the origin of the coordinate system. That means that, for all real x,
sin(−x) = − sin x. The function sine is said to be odd.
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O �!��!� y = 
os x| ||| �2 ��� ��2Fig. 9–8

Remark: We observe, and we could prove, that the graph of cosine is symmetrical
about the y-axis. That means that, for all real x, cos(−x) = cosx. The function
cosine is said to be even.

O �!��!� y = 
os x| ||| �2 ��� ��2 y = sinxFig. 9–9

Remark: We observe, and we could prove, that the graph of cosine is the image
of the graph of sine under the translation by vector π2

−→ı .
For all x real, sin (x+ 2π) = sin x and cos (x+ 2π) = cosx. The functions sine
and cosine are thus said to be periodic [ pI@rI 6dIk] with period [ pI@rI@d] 2π.

9.8.3 The radian

The radian [ reIdI@n] is a unit of measurement of angles. Its abbreviation is
‘rad’. An angle between two radii 1 [ reIdI aI] that cut off on the circumference
of a circle an arc equal in length to the radius has a measure of 1 rad. A
right angle measures π2 rad.

1plural of radius [ reIdI@s].
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9.8.4 Some remarkable values

x (rad) 0 π

6
π

4
π

3
π

2

sin x 0 1
2

√
2

2

√
3

2 1

cosx 1
√

3
2

√
2

2
1
2 0

O

I

J

M

N

x

y

α
β

sinα

cosα
Fig. 9–10





Appendix A

Miscellanea

A.1 Transcription phonétique
J’ai suivi la transcription proposée par [13]. Je la redonne ici telle qu’elle est détaillée en
page xiii :

Voyelles
bean barn born boon burn
i: A: O: u: 3:

pit pet pat putt pot put another
I e æ 2 6 U @ – @

bay buy boy no now peer pair poor (pour)
eI aI OI @U aU I@ e@ U@ O@

On lit en note que la paire /E@/ a été simplifiée en /e@/.

Consonnes
pin bin tin din come gum chain Jane
p b t d k g tS dZ

fine vine think this zeal sheep measure how
f v T ð z S – Z h
sum sun sung light right wet yet
– m – n – ŋ l r w j

On note l’accent tonique principal avec « » et l’accent secondaire avec « ». Un petit
« r » en exposant « r » note l’apparition éventuelle d’un « r » à la liaison.

Lorsque un @ est placé entre parenthèses, il peut être amuï, c’est-à-dire, par exemple,
que [p(@)l] peut se lire [p@l] ou bien [pl].

On donne à côté des mots au singulier ou au pluriel la prononciation du singulier.
On trouvera dans l’annexe D « hypothesis plur. -ses [haI p6TIsIs -si:z] » pour indiquer

que le pluriel de « hypothesis [haI p6TIsIs] » est « hypotheses [haI p6TIsi:z] ». On n’y a
indiqué que les pluriels irréguliers.
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Lorsque [13] donne plusieurs prononciations possibles pour un même mot dans un
même champ lexical, je n’ai, en général, donné que la prononciation principale. À défaut
de trouver la prononciation d’un mot dans [13], j’ai utilisé [21] ou encore [26].

A.2 Greek alphabet

lower-case capital english [pron.] french

α A alpha [ ælf@] alpha
β B beta [ bi:t@] bêta
γ Γ gamma [ gæm@] gamma
δ ∆ delta [ delt@] delta
ε E epsilon [ep saIl@n] epsilon
ζ Z zeta [ zi:t@] dzéta
η H eta [ i:t@] êta
θ Θ theta [ Ti:t@] thêta
ι I iota [aI @Ut@] iota
κ K kappa [ kæp@] kappa
λ Λ lambda [ læmd@] lambda
µ M mu [mju:] mu
ν N nu [nju:] nu
ξ Ξ xi [ksaI] xi [ksi]
o O omicron [@U maIkr@n] omicron
π Π pi [paI] pi
ρ P rho [r@U] rô
σ Σ sigma [ sIgm@] sigma
θ T tau [tO:] tau
υ Υ upsilon [ju: psaIl@n] upsilon
ϕ Φ phi [faI] phi [fi]
χ X chi [kaI] khi
ψ Ψ psi [saI] psi
ω Ω omega [ @UmIg@] oméga

ε, ϑ, $, %, and φ are variants of ε, θ, π, ρ and ϕ respectively.
σ is written ς at the end of a word.



Appendix B

Geometry

B.1 Plane geometry

There is no ‘royal road’ to geometry.
Euclid 1(4th–3rd c. bc) Greek mathematician
Adressed to Ptolemy I

The plane [pleIn] geometry [dZI 6m@trI] deals with figures such as points
[pOInt], lines [laIn], triangles [ traIæŋgl], circles [ s3:kl], quadrilaterals [ kw6-
drI læt(@)r(@)l]. . . which lie in a plane. You can think of a plane as a flat
surface which extends infinitely [ InfIn@tlI] in all direction. One can represent
a plane by a piece of paper or a blackboard.

B.1.1 Points and lines

Given two distinct points A and B in the plane, there is one and only one
line which goes or passes through those points. We denote that line by (AB).
The point A is on the line (AB). We can denote that fact by A ∈ (AB). If
points are on a same line, they are said to be collinear [k6 lInj@r].

The line segment or segment between A and B is the set consisting of A,
B and all the points on the line (AB) lying between A and B. We denote
this segment by [AB]. The length of the segment [AB] is also the distance
from A to B. It is denoted by AB.

1Euclid [ ju:klId] taught in Alexandria [ ælI gzA:ndrI@] circa [ s3:k@] 300 bc, and was
probably the founder of its mathematical school. His chief extant work is the 13-volume
Elements, which became the most widely known mathematical book of classical antiquity.
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The midpoint [ mIdpOInt] I of the segment [AB] is the point such that I
is on [AB] and AI = IB.

Let L and L′ be two lines. If L = L′ or if L and L′ have no common
point, L and L′ are parallel [ pær@lel]. If L and L′ are not parallel, they
meet in exactly one point. They cut each other. If A is the common point
of L and L′, we can say that L and L′ intersect [ Int@ sekt] at A. A is their
intersection point [ Int@ sekSn].

Let A be a point on the line L. A defines on L two rays [reI] or half lines
starting from A. If B and C are on L such that A is on [BC], we can denote
those rays by [AB) and [AC) respectively. A is called the vertex [ v3:teks]
of the rays [AB) and [AC).

-B CA [AC)� B CA[AB)
Fig. B–1

B.1.2 Angles

Let A, B and C be three collinear points such that B ∈ [AC].They define a
straight angle [streit æŋgl] viz. 2 ∠ABC ‘angle ABC’. The angle ∠ABA is
said to be full.

Two rays with the same vertex separate the plane into two regions. Each
one of these regions together with the rays is called an angle determined by
the rays, e.g. ∠ABC is determined by the rays [BA) and [BC). Those rays
are called the legs [leg] of the angle ABC.

An angle can be acute [@ kju:t], right [raIt] or obtuse [@b tju:s].a
ute angle right angle obtuse angleFig. B–2

Two angles are adjacent [@ dZeIs@nt] if they have a ray in common.
We can measure angles with degrees [dI gri:]. A right angle is an angle

of 90˚. A straight angle has 180˚. If the sum of two angles is equal to
2viz. [vIz] or [ neImlI]: namely; that is to say; in other words. (abbr. of the Latin

videlicet, z being a medieval Latin symbol for abbreviation of -et)
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90˚, those angles are said to be complementary [ k6mplI ment@rI]. If their
sum is equal to 180˚, they are said to be supplementary [ s2plI ment@rI]. To
measure an angle we use a protractor [pr@ trækt@r].

We define the angle bisector to be the ray which divides the angle into
two adjacent angles having the same measure.

We define two lines to be perpendicular [ p3:pen dIkjUl@r] if they intersect,
and if the angle between the lines is a right angle. The mid-perpendicular or
perpendicular bisector of segment [AB] is the line which passes through the
midpoint of [AB] and which is perpendicular to (AB).

On the figure below, ∠CAB and ∠BAD are adjacent and supplementary;
∠CAB and ∠EAD are said to be vertical [ v3:tIkl]; ∠CAB and ∠FEA are
said to be corresponding [ k6rIs p6ndIŋ]; ∠CAB and ∠GEH are alternate
[O:l t3:n@t].

B AC D
GEF H

Fig. B–3

Line (AE) is called a transversal [trænz v3:sl] or traverse [ træv@s] for it
intersects two (or more) lines.

B.1.3 Polygons

A polygon [ p6lIg@n] is a closed plane figure bounded by three or more straight
line segments that terminate in pairs at the same number of vertices, and
do not intersect other than at their vertices. A polygon is regular [ regjUl@r]
if it has all its sides and all its angles equal. Specific polygons have names
that indicate the number of sides such as triangle, quadrilateral, pentagon
[ pent@g@n] — five sides —, hexagon [ heks@g@n] — six sides —, and so on.

A polygon is convex [ k6nveks] if it has no interior angle greater than
180˚. On the figure below ADBEF is convex whereas ACBEF is not. A
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polygon which is not convex is said to be concave [ k6ŋkeIv].

A F E
D BCFig. B–4

B.1.4 Triangles

A triangle is a three-sided plane figure. Three non-collinear points determine
a triangle. If A, B and C are not collinear, they are the vertices [ v3:tIsi:z]
(plural of ‘vertex’ [ v3:teks]) of the triangle ABC. Triangle ABC can be
denoted by 4ABC.

Triangles can be classified by the relative [ rel@tIv] lengths of their sides. A
scalene [ skeIli:n] triangle has no sides of equal length; an isosceles [aI s6sIli:z]
triangle has at least two equal sides; an equilateral [ i:kwI læt(@)r(@)l] triangle
has three equal sides. A right or right-angled triangle has one angle of 90˚.

Pythagoras’ 3 theorem [paI Tæg@ræs TI@r@m] (also known as Pythagorean
[paI Tæg@ rI@n] theorem) states that if 4ABC is a right triangle with legs of
lengths a and b, and hypotenuse [haI p6t@nju:z] of length c, then c2 = a2 +b2.

An altitude [ æltItju:d] is a segment between a vertex and the opposite
[ 6p@zIt] side or base [beIs], that is perpendicular to the side. It is also the
length of that segment. The common point of the three altitudes is the
orthocentre [ O:T@U sent@r].

A median [ mi:dj@n] is a line joining a vertex of a triangle to the midpoint
of the opposite side. All three such lines coincide in the centroid [ sentrOId].
Archimedes [ A:kI mi:di:z] (c. 287–212 b.c.) obtained it as the center of grav-
ity [ grævItI] of a triangular [traI æŋgjUl@r] plate of uniform density [ dens@tI].
The centroid of the triangle is also the point of trisection [traI sekSn] of the
three medians of the triangle.

The mid-perpendiculars of the sides of a triangle intersect at the cir-
3Pythagoras (6th-c bc) Philosopher and mathematician, born in Samos [ seIm6s],

Greece. He settled at Crotona, Magna Graecia [ mægn@ gri:sI@] (c. 530 bc) where he
founded a moral and religious school. He eventually fled from ther because of persecution,
settling at Megapontum in Lucania [lu: keInI@]. The famous theorem attributed to him
was probably developed later by members of the Pythagorean school, which is best known
for its studies of the relations between numbers.
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cumcentre [ s3:k@m sent@r] which is the centre [ sent@r] of the circumcircle
[ s3:k@m s3:kl] or circumscribed [ s3:k@m skraIbd] circle.

B.1.5 Trigonometry

Trigonometry [ trIg@ n6m@trI] is the branch of mathematics concerned with
the properties of the trigonometric [ trIg@n@ metrIk] ratios [ reISI@U] or trig
ratios and their application to the determination of the sides and angles of
triangles, used in surveying [s@ veIIŋ], navigation. . .
To survey : [s@ veI] 1 take or present a general view of. 2 examine the
condition of (a building etc.), especially on behalf of a prospective buyer. 3
determine the boundaries, extent, ownership, etc., of (a district etc.).

The trig ratios are: sine [saIn], cosine [ k@UsaIn], tangent [ tændZ@nt],
cotangent [ k@U tændZ@nt], secant [ si:k@nt], and cosecant [ k@U si:k@nt].

Let ABC be a right triangle the hypotenuse of which is AB. Let α denote
∠BAC. Then

sinα = BC

AB
= opposite

hypotenuse cosα = AC

AB
= adjacent

hypotenuse

tanα = BC

AC
= opposite

adjacent
There are several mnemonics [ni: m6nIk] (memory aids) which can help

you to remember those formulae 4 [ fO:mjUli:]. Here is an example:

s o h c a t h t o a
Some Officers Have Curly Auburn Hair To Offer Attraction.

s stands for ‘sine’, c for ‘cosine’, t for ‘tangent’, a for ‘adjacent’, h for
‘hypotenuse’, and o for ‘opposite’.

B.1.6 Quadrilaterals

A quadrilateral or trapezoid [ træpIzOId] is any four-sided plane figure. It has
four vertices. The diagonals [daI æg@nl] of ABCD are [AC] and [BD].

A trapezium [tr@ pi:zj@m] is a quadrilateral with two parallel sides of un-
equal length. A parallelogram [ pæræ lel@græm] is a quadrilateral with op-
posite pairs of sides parallel. A rhombus 5 [ r6mb@s] is an equilateral parallel-

4plural of ‘formula’ [ fO:mjUl@]
5plural: ‘rhombi’ [ r6mbaI] or ‘rhombuses’ [ r6mb@sIz].
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ogram — all its sides are equal. A rectangle [ rek tæŋgl] is a quadrilateral all
the angles of which are right. A square [skwe@r] is an equilateral rectangle.6

If the lengths are measured with metres [ mi:t@r], the area [ e@rI@] are
measured with square metres. The area of a square of side s m is equal to
s2 m2 ‘square meter’.

B.1.7 Circles

A circle is a closed [kl@Uzd] plane curve [k3:v] every point of which is equidis-
tant from a given fixed point, the centre. In other words, a circle is the path
[pA:T] of a point that moves so as to keep a constant distance from a fixed
point, the centre.

Each circle comprises [k@m praIzIz] a radius 7 [ reIdI@s] — the distance
from any point on the circle to the centre —, a circumference [s@ k2mf(@)r(@)ns]
— the boundary of the circle —, diameters [daI æmIt@r] — lines crossing the
circle through the centre —, chords [kO:d] — lines joining two points on the
circumference —, and tangents [ tændZ@nt] — lines that touch the circum-
ference at one point.

An arc [A:k] is a section of a curved line. A circle has three types of
arc: a semicircle [ semI s3:kl], which is exactly half of the circle; minor arcs
[ maIn@r], which are less than the semicircle; andmajor arcs [ meIdZ@r], which
are greater than the semicircle.

The ratio of the distance all around the circle — the circumference or
perimeter [pe rImIt@r] — to the diameter is an irrational number called π
[paI].

B.2 Solid geometry

Solid [ s6lId] geometry is the branch of geometry concerned with the proper-
ties of three-dimensional figures. Among these figures there are: the planes,
the cubes, the cuboids [ kju:bOId] or right parallelepipeds [ pær@ lel@ paIpId],
the cylinders [ sIlInd@r], the pyramids [ pIr@mId], the spheres [sfI@r].

A polyhedron [ p6lI hi:dr@n] 8 is a solid figure. A polyhedron is said to
be convex if all segments joining any two points on its boundary lie wholly
inside it. A regular convex polyhedron or ‘platonic solid’ [pl@ t6nIk] is a

6In US English the British ‘trapezoid’ is called ‘trapezium’ and vice versa [ vaIsI v3:s@].
7plural ‘radiuses’ [ reIdI@sIz] or ‘radii’ [ reIdI aI]
8plurals: ‘polyhedrons’ [ p6lI hi:dr@nz] or ‘polyhedra’ [ p6lI hi:dr@]



B.3. COORDINATE SYSTEM 89

convex polyhedron the faces of which are regular polygons. There are only
five platonic solids viz the regular tetrahedron [ tetr@ hi:dr@n], the cube, the
regular octahedron [ 6kt@ hi:dr@n], icosahedron [ aIk@s@ hi:dr@n] and dodeca-
hedron [ d@Ud@k@ hi:dr@n].

The cube is a polyhedron which has eight corners — or ‘vertices’ — twelve
edges [edZ] and six faces. Each face is a square. All the edges of a cube have
the same length.

A cuboid is a polyhedron the faces of which are rectangles. It has eight
vertices, twelve edges and six faces. If one wishes, one can use the more
tongue-twisting words ‘right parallelepiped’ to speak about a cuboid.

A net is a diagram of a hollow solid consisting of the plane shapes of the
faces so arranged that the diagram could be folded to form the solid.

net of a 
ube net of a pyramid Fig. B–5

B.3 Coordinate system
Once a unit length is selected, we can represent points on a line by numbers.-0 1�1�4 2:2 ��13 Fig. B–6

A coordinate system [k@U O:dn@t] is any system for locating points by
their coordinates with respect to some set of reference [ refr@ns] points, lines,
directions, etc.

Cartesian coordinates [kæ ti:zj@n] or rectangular coordinates [rek tæŋgjU-
l@r] provide a system for the representation of a point in plane in terms of
its distance, measured along a pair of mutually perpendicular axes [ æki:z],
from a given origin [ 6rIdZIn]. On the Cartesian plane the point ( a ; b ) is
located by measuring a units along the x-axis [ æksIs] and b units along the
y-axis, and then finding the point of intersection of the perpendiculars to the
axes at those points (see figure below); a is then the abscissa [æ bsIs@] 9 and

9plurals: abscissas [æ bsIs@z] or abscissae [æ bsIsi:]
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b the ordinate [ O:dn@t]. By convention, the positive directions of the axes
point to the right and upwards, so that the four points (±1 ; ±1 ) are placed
as shown; by convention, the first quadrant [ kw6dr@nt] is that in which both
coordinates are positive, and the other quadrants are numbered anticlockwise
[ æntI kl6kwaIz] 10 from the first. 6

-O IJ a
b M ( a ; b )( 1 ; 1 )

(�1 ; �1 )

1st quadrant2d quadrant

4th quadrant3rd quadrant
Fig. B–7

Cartesian : of or relating to Descartes or his work in philosophy, sci-
ence, and mathematics.
Descartes : René (1596–1650) French philosopher, mathematician, and
man of science, often called the father of modern philosophy. In mathemat-
ics he developed the use of coordinates to locate a point in two or three
dimensions: this enabled the techniques of algebra and calculus to be used
to solve geometrical problems.

10In a curve opposite in direction to the movement of the hands of a clock.
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Units

He gave man speech, and speech created thought
Which is the measure of the universe.
Percy Bysshe Shelley (1792–1822), English poet,
in Prometheus Unbound 1 (1820)

C.1 The British System
Imperial : [Im pI@rI@l] belonging to the official British series of weights [weIt] and
measures [ meZ@] — (of non-metric weights and measures) used or formely used by statute
[ stætju:t] i.e. a written law passed by a legislative body, e.g. an Act of Parliament, in the
UK (e.g. imperial gallon).

C.1.1 Linear measure

Linear : [ lInI@r] related to length.

1 inch [In(t)S] 1 in.
1 foot = 12 in. [fUt / fi:t] 1 ft.
1 yard = 3 ft. [jA:d] 1 yd.
1 (statute) mile = 1,760 yd. [maIl] 1 mi.
1 int. nautical mile [ nO:tIkl]

1 in = 25.4 mm. 1 international nautical mile = 1, 851.9962 m.
Nautical distances are measured with fathom [ fæð@m] (6 ft) and cable [ keIbl] (120 fathoms) too.

1Percy [ p3:sI] Bysshe [bIS] Shelley [ SelI] — Prometheus [pr@ mi:Tju:s]
91
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C.1.2 Square measure

One square [skwe@r] inch is the area of a square the sides of which are 1 inch
long. Acres [ eIk@r] are used to measure land.

1 square inch 1 sq. in.
1 square foot = 144 sq. in. 1 sq. ft.
1 square yard = 9 sq. ft. 1 sq. yd.
1 acre = 4,840 sq. yd.
1 square mile = 640 acres 1 sq. mi.

C.1.3 Cubic measure

One cubic [ kju:bIk] inch is the volume of a cube [kju:b] the sides of which
are 1 inch long.

1 cubic inch 1 cu. in.
1 cubic foot = 1,728 cu. in. 1 cu. ft.
1 cubic yard = 27 cu. ft. 1 cu. yd.

C.1.4 Capacity measure
Measure of capacity : [k@ pæsItI] a measure used for vessels [vesl] and liquids [ lIkwId]
or grains etc.

Vessel : 1 a hollow [h6 l@U] receptacle [rI sept@kl] especially for liquid e.g. a cask,
cup, pot, bottle, or dish. 2 a ship or boat, especially a large one.

1 fluid ounce [ flu:Id aUns -iz] 1 fl. oz.
1 gill = 5 fluid oz. [dZIl] 1 gi.
1 pint = 20 fluid oz. [paInt] 1 pt.
1 quart = 2 pt. [kwO:t] 1 qt.
1 gallon = 4 qt. = 277.42 cu. in. [ gæl@n] 1 gal.
1 peck = 2 gal. [pek] 1 pk.
1 bushel = 4 pk. [ bUSl] 1 bu.
1 quarter = 8 bu. [kwO:t@r]

, There exists also ‘gill’ pronounced [gIl]. We find in [21]: 1 the respiratory organ
in fishes [ . . . ] 2 the vertical radial plates on the underside of mushrooms [ . . . ] 3 the flesh
below a person’s jaws and ears (green about the gills). 4 the wattles of fowls.
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C.1.5 Avoirdupois weight

Avoirdupois : [ æv@d@ pOIz]: 1(in full avoirdupois weight) a system of weights based
on a pound of 16 ounces or 7, 000 grains. 2 weight, heaviness.

1 grain [greIn] 1 gr or 1 gr.
1 dram or drachm [dræm] 1 dr.
1 ounce = 16 dr. [aUns] 1 oz
1 pound = 16 oz = 7,000 gr. [paUnd -z] 1 lb
1 stone = 14 lb [st@Un] 1 st.
1 quarter = 2 st. 1 qt.
1 hundredweight = 4 qt. [ h2ndr@dweIt] 1 cwt
1 (long) ton = 20 cwt [t2n] 1 t.
1 short ton = 2,000 lb

1 lb = 0.453, 592, 37 kg

C.2 US Customary Weights and Measures
[Excerpt from Encyclopedia Americana (1993) [1]]

It is sometimes thought that the customary system of weights and measures in
the British Commonwealth countries and that in the United States are identical.
It is true that the US and the British inch are defined identically for scientific work
(1 inch = 2.54 centimeters exactly); that the two systems are practically identical
in commercial usage; and that many relationships, such as 12 inches = 1 foot, are
the same in both systems. However, there are some very important differences.

In the British system an avoirdupois ounce of water at 62◦ F has a volume of
1 fluid ounce. This convenient relation does not exist in the US system.

Among other differences between the British and the American systems of
weights and measures it should be noted that the use of the troy [trOI] pound
was abolished in England on Jan. 6th 1879, only the troy ounce and its subdi-
visions being retained. The troy pound is still legal in the USA, although it is
not now greatly used. The common use in England of the stone of 14 pounds
should be mentioned. This unit is not now used in the USA. In the apothecaries’
[@ p6T@k(@)rIz] systems of liquid measure the British insert a unit, the fluid scru-
ple [ skru:pl], equal to one third of a fluid drachm (dram) between their minim
[ mInIm] and their fluid drachm.

Customary units of measurement continue to be used in almost all aspects
of everyday life in the United States, and few indications of popular interest in
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change are visible. By 1980 none of the 50 states of the United States had enacted
legislation requiring the mandatory use of International Units. However, many of
them had modified their laws to accommodate such use.

C.2.1 Length

Where foot or mile is writen in bold face in the following tables, it is to be
understood as the survey foot or mile rather than international foot or mile.

Gunter’s chain measure or
surveyor’s chain measure

1 inch 1 in
1 foot = 12 inches 1 ft
1 yard = 3 feet 1 yd

1 link 1 li
1 rod = 16.5 feet 1 rd

1 chain = 100 li 1 ch
1 furlong = 40 rods 1 fur
1 survey mile = 8 furlongs mi 1 survey mile = 80 ch 1 mi

C.2.2 Area

Area
1 square inch 1 in2

1 square foot = 144 sq in 1 ft2

1 square yard = 9 sq ft 1 yd2

1 square rod = 272.25 square feet 1 sq rd
1 acre = 160 sq rd
1 square mile = 640 acres 1 mi2

1 section of land = 1 square mile
1 township = 36 sections
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C.2.3 Volume

Volume
1 cubic inch 1 in3

1 cubic foot = 1,728 in3 1 ft3

1 cubic yard = 27 ft3 1 yd3

Liquid measure Dry measure
1 minim [ mInIm]
1 fluid dram = 60 minims 1 fl dr
1 fluid ounce = 8 fl dr 1 fl oz
1 gill = 4 fl oz 1 gi
1 pint = 4 gi 1 pt 1 pint = 33.60 in3 1 pt
1 quart = 2 pt 1 qt 1 quart = 2 pt 1 qt
1 gallon = 4 qt = 231 in3 1 gal

1 peck = 8 qt 1 pk
1 bushel = 4 pk 1 bu

The words ‘fluid dram’ and ‘fluid ounce’ are also spelled — in the USA — ‘fluidram’ and
‘fluidounce’ respectively.

When necessary to distinguish the liquid pint or quart from the dry pint or quart, the
word ‘liquid’ or the abbreviation ‘liq’ should be used in combination with the name or
abbreviation of the liquid unit whereas the word ‘dry’ should be used in combination with
the name or abbreviation of the dry unit.

Apothecaries’ fluid measure
US British

1 minim 1 min 1 minim 1 min.
1 fluid scruple = 20 min. 1 fl. scr.

1 fluid dram = 60 min 1 fl dr 1 fluid drachm = 3 fl. scr. 1 fl. dr.
1 fluid ounce = 8 fl dr 1 fl oz 1 fluid ounce = 8 fl. dr. 1 fl. oz
1 pint = 16 fl oz 1 pt 1 pint = 20 fl. oz 1 pt.
1 quart = 2 pt 1 qt
1 gallon = 4 qt = 231 in3 1 gal 1 gallon = 8 pt. = 277.42 cu. in. 1 gal.
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C.2.4 Weight
hundredweight : 1 (in full long hundredweight) Brit. a unit of weight equal to
112 lb avoirdupois (about 50·8 kg). 2 (in full metric hundredweight) a unit
of weight equal to 50 kg. 3 (in full short hundredweight) US a unit of weight
equal to 100 lb (about 45·4 kg).
troy : (in full troy weight) a system of weights used for precious metals
and gems, 2 with a pound of 12 ounces or 5, 760 grains. [Middle English probably
from Troyes]

The grain is the basis of all the weight systems and its value is always
the same. One grain is equal to 64.798 91 mg.

Avoirdupois Weight
1 grain 1 gr
1 dram 1 dr
1 ounce = 16 dr 1 oz
1 pound = 16 oz = 7,000 gr 1 lb
1 hundredweight = 100 lb 1 cwt
1 ton = 20 cwt 1 t
1 long or gross hundredweight = 112 lb
1 long or gross ton = 2,240 lb

Troy Weight Apothecaries’ Weight
1 grain 1 gr 1 grain 1 gr

1 scruple = 20 gr 1 s ap
1 pennyweight = 24 gr 1 dwt

1 dram = 3 s ap 1 dr ap
1 ounce troy = 20 dwt 1 oz t 1 ounce = 8 dr ap 1 oz ap
1 pound troy = 12 oz t 1 lb t 1 pound = 12 oz ap 1 lb ap

When necessary to distinguish the avoirdupois dram from the apothecaries’ dram, or to
distinguish the avoirdupois dram or ounce from the fluid dram or ounce, or to distinguish
the avoirdupois ounce or pound from the troy or apothecarie’s ounce or pound, the word
‘avoirdupois’ or the abbreviation ‘avdp’ should be used in combination with the name or
abbreviation of the avoirdupois unit.

When the terms ‘hundredweight’ and ‘ton’ are used unmodified, they are commonly
understood to mean the 100-pound hundredweight and the 2,000-pound ton respectively;
these units may be designated [ dezIgneItId] ‘net’ or ‘short’ when necessary.

2gem: [dZeIm] a precious stone esp. when cut and polished or engraved.
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C.3 The SI System

C.3.1 Système Internationale d’Unités

[Excerpt from The New York Public Library Science Desk Reference]
The metric system was devised by scientists appointed by the French National

Assembly during the French Revolution. The system was developed mainly as
a standard to replace the numerous measurement systems in use throughout the
country, but the system also stood for defiance against the previous governement’s
standard measurement system.

The first measurement, the meter 3 [ mi:t@r], was based on the circumference of
the Earth measured on a line through Paris and the north and south poles [p@Ul].
The line was devided by 40, 000, 000, and each division was called a meter (from the
Greek word metron, ‘measure’). The standards of length were defined multiplying
or dividing the meter by various factors of 10. Later, the meter was further defined
as the length equal to 1, 650, 736.73 times the wavelength of orange light emitted
when a gas consisting of a pure isotope [ aIs@Ut@Up] of krypton [ krIpt6n] (mass
number 86) is excited in an electrical [I lektrIkl] discharge [ dIstSA:dZ]. In 1983, the
wavelength definition was replaced by the distance light travels in a vacuum in
1/299, 792, 458 second.

Other metric [ metrIk] measurements also have certain set standards. For
example, the gram was originally set as the mass of 1 cubic centimeter of water
under standard conditions. The modern kilogram [ kIl@Ugræm] (1, 000 grams) is
equal to the mass of an international kilogram stored at Sèvres, France; a prototype
[ pr@Ut@UtaIp] is also located at the United States Bureau of Standards.

The metric system has been incorporated into the International System of
Units (shortened to SI, from the French Système International d’Unités), which is
now the standard measurement system for most fields of science. Within the SI
system, the units are multiplied by factors of 10 when converting from one unit to
another.

There are seven base units of the SI system: themeter (m, a measure of length),
the kilogram (kg, a measure of weight), the second [ sek@nd] (s, a measure of
time), the ampere [ æmpe@r] (A, a measure of electric [I lektrIk] current [ k2r@nt]),
the kelvin [ kelvIn] (K, a measure of temperature [ tempr@tS@r]), the mole [m@Ul]
(mol, a measure of the amount of a substance), and the candela [kæn del@] (cd,
a measure of luminous [ lu:mIn@s] intensity), and two supplementary units, the
radian [ reIdj@n] (rad, plane angles) and steradian [st@ reIdj@n] (sr, solid angles).
[from [21]]

3US spelling of ‘metre’.
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C.3.2 Metric Prefixes

Here are the number-prefixes recommended by the Conférence générale des
Poids et Mesures in 1991.

Prefix Abbr. Factor Prefix Abbr. Factor
deca- da 101 deci- d 10−1

hecto- h 102 centi- c 10−2

kilo- k 103 milli- m 10−3

mega- M 106 micro- µ 10−6

giga- G 109 nano- n 10−9

tera- T 1012 pico- p 10−12

peta- P 1015 femto- f 10−15

exa- E 1018 a(t)to- a 10−18

zetta- Z 1021 zepto- z 10−21

yotta- Y 1024 yocto- y 10−24

C.3.3 Units of the SI

Derived units with special names
Physical quantity Pronon. Name Pronon. Symbol Def.
frequency fri:kw@nsI hertz h3:ts Hz s−1

force fO:s newton nju:tn N m kg s−1

energy en@dZI joule dZu:l J N m
power paU@r watt w6t W J s−1

pressure preS@r pascal pæsk(@)l Pa N m−2

electric charge tSA:dZ coulomb ku:l6m C A s
electromotive force I lektr@U m@UtIv volt v@Ult V W A−1

electic resistance rI zIst@ns ohm @Um Ω V A−1

electric conductance k@n d2kt@ns siemens si:m@nz S A V−1

electric capacitance k@ pæsIt@ns farad fær@d F C V−1

magnetic flux mæg netIk fl2ks weber veIb@r Wb V s
inductance In d2kt@ns henry henrI H Wb A−1

magnetic flux density densItI tesla tesl@ T Wb m−2

luminous flux lu:mIn@s lumen lu:mIn lm cd sr
illumination I lu:mI neISn lux l2ks lx lm m−2
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C.3.4 The names of the units

Ampère : André-Marie (1775–1836), French physicist, mathematician, and philosopher.
He was a child prodigy who became one of the founders of electromagnetism and electro-
dynamics, and is best known for his analysis of the relationship between magnetic force
and electric current. Ampère developed a precursor of the galvanometer.
Coulomb : Charles-Augustin de (1736–1806), French military engineer. He conducted
research on structural mechanics, elasticity, friction, electricity, and magnetism. He is
best known for his Coulomb’s Law, established with a sensitive torsion balance in 1785,
according to which the forces between two electrical charges are proportional to the product
of the sizes of the charges and inversely proportional to the square of the distance between
them. Coulomb’s verification of the inverse square law of electrostatic force enabled the
quantity of electric charge to be defined.
Faraday : [ fær@ deI] Michael (1791–1867), English physicist and chemist. One of the
greatest experimentalists, he was largely self-educated. Appointed by Sir Humphry Davy
as his assistant at the Royal Institution, he initially concentrated on analytical chemistry
and discovered benzene in 1825. His most important work was in electromagnetism, in
which field he demonstrated electromagnetic rotation and discovered electromagnetic in-
duction (the key to the development of the electric dynamo and motor). His concept of
magnetic lines of force formed the basis of the classical field theory of electromagnetic
behaviour. He also discovered the laws of electrolysis.
Henry : Joseph (1797–1878), American physicist, born in Albany [ O:lb@nI], New York.
In 1832 he became professor of natural philosophy at Princeton, and in 1846 first secretary
of the Smithsonian Institution. He discovered electrical induction independently of Michael
Faraday, constructed the first electromagnetic motor (1829), demonstrated the oscillatory
nature of electric discharge (1842), and introduced a system of weather forecasting.
Hertz : Heinrich Rudolf (1857–1894), German physicist and pioneer of radio com-
munication. He worked for a time as Helmholtz’s assistant in Berlin, and in 1886 began
studying the electromagnetic waves that Maxwell had predicted. He demonstrated them
experimentally, and also showed that they behaved like light and radiant heat, thus prov-
ing that these phenomena, too, were electromagnetic. In 1889 he was appointed professor
of physics at Bonn, but he died of blood-poisoning at the early age of 37.
Joule : James Prescott (1818–1889), English physicist. Experimenting in his private
laboratory and at the family’s brewery, he established that all forms of energy were basi-
cally the same and interchangeable — the basic principle of what is now called the first
law of thermodynamics. Among other things, he measured the thermal effects of an elec-
tric current due to resistance of the wire, establishing the law governing this. In 1852 he
and William Thomson, later Lord Kelvin, discovered the fall in temperature when gases
expand (the Joule-Thomson effect), which led to the development of the refrigerator and
to the science of cryogenics.
Kelvin : William Thomson, 1st Baron (1824–1907), British physicist, professor of
natural philosophy at Glasgow from 1846 to 1895. He restated the second law of ther-
modynamics in 1850, and introduce the absolute scale of temperature. His concept of an
electromagnetic field influenced Maxwell’s electromagnetic theory of light, which Kelvin
never accepted. He was involved in the laying of the first Atlantic cable, for which he in-
vented several instruments, and he devised many scientific instruments for other purposes.
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Newton : Sir Isaac [ aIz@k] (1642–1727), English mathematician and physicist, the
greatest single influence on theoretical physics until Einstein. His most productive pe-
riod was 1665–1667, when he retreated temporarily from Cambridge to his isolated home
in Lincolnshire during the Great Plague. He discovered the binomial theorem, and made
several other contributions to mathematics, notably differential calculus and its relation-
ship with integration. A bitter quarrel with Leibnitz ensued as to which of them had
discovered calculus first. In his major treatise, Principia Mathematica (1687), he gave a
mathematical description of the laws of mechanics and gravitation, and applied these to
planetary and lunar motion. For most purposes Newtonian mechanics has survived even
the introduction of relativity theory and quantum mechanics, to both of which it stands
as a good approximation. Another influential work was Opticks (1704), which gave an
account of his optical experiments and theories, including the discovery that white light
is made up of a mixture of colours. In 1699 Newton was appointed Master of the Mint;
he entered Parliament as MP for Cambridge University in 1701, and in 1703 was elected
president of the Royal Society.
Ohm : Georg Simon (1789–1854), German physicist. He published two major papers
in 1826, which between them contained the law that is named after him. This states
that the electric current flowing in a conductor is directly proportional to the potential
difference (voltage), and inversely proportional to the resistance. Applying this to a wire
of known diameter and conductivity, the current is inversely proportional to length.
Pascal : Blaise (1623–1662), French mathematician, physicist, and religious philoso-
pher. A child prodigy, before the age of 16 he had proved an important theorem in the
projective geometry of conics, and at 19 constructed the first mechanical calculator to be
offered for sale. He discovered that air has weight, confirmed that the vacuum could exist,
and derived the principle that the pressure of a fluid at rest is transmitted equally in all
directions. He also founded the theory of probabilities, and developed a forerunner of inte-
gral calculus. He later entered a Jansenist convent, where he wrote two classics of French
devotional thought, the Lettres Provinciales (1656–7), directed against the casuistry of the
Jesuits, and Pensées (1670), a defence of Christianity.
Siemens : Ernst Werner von (1816–1892), German electrical engineer. He developed
electroplating and an electric generator which used an electromagnet, and set up a factory
which manufactured telegraph systems and electric cables and pioneered electrical traction.
His brother Karl Wilhelm (Sir Charles William, 1823–1883) moved to England, where
he developed the open-hearth furnace and designed the cable-laying steamship Faraday,
and also designed the electric railway at Portrush in Northern Ireland. A third brother
Friedrich (1826–1904) worked both for Werner in Germany and with Charles in England;
he applied the principles of the open-hearth furnace to glassmaking.
Tesla : Nikola (1856–1943), American electrical engineer and inventor, born in what
is now Croatia of Serbian descent. He emigrated to the US in 1884 and worked briefly on
motors and direct-current generators with Thomas Edison before joining the Westinghouse
company, where he developed the first alternating-current induction motor (1888) and
made contribution to long-distance electrical power transmission. Tesla also studied high-
frequency current, devloping several forms of oscillators and the tesla coil, and developed
wireless guidance system for ships. Although his inventions revolutionized the electrical
industry, he died in poverty.
Volta : Alessandro Giuseppe Antonio Anastasio, Count (1745–1827), Italian physi-
cist. He was the inventor of a number of important electrical instruments, including the
electrophorus and the condensing electroscope, but is best known for the voltaic pile or



C.4. HISTORY AND FUTURE OF THE IMPERIAL SYSTEM 101

electrochemical battery (1800) — the first device to produce continuous electric current.
The impetus for this was Luigi Galvani’s claim to have discovered a new kind of electricity
produced in animal tissue, which Volta ascribed to normal electricity produced by the
contact of two dissimilar metals.
Watt : James (1736–1819), Scottish engineer. He greatly improved the efficiency
of the Newcomen beam engine by condensing the spent steam in a separate chamber,
allowing the cylinder to remain hot. The improved engines were adopted for a variety
of purposes, especially after Watt entered into a business partnership with the engineer
Matthew Boulton. Watt continued inventing until the end of his life, introducing rotatory
engines, controlled by a centrifugal governor, and devising a chemical method of copying
documents. He also introduced the term horsepower.4

Weber : Wilhelm Eduard (1804–1891), German physicist. His early researches were
in acoustics and animal locomotion, but he is chiefly remembered for his contributions in
the fields of electricity and magnetism. He proposed a unified system for electrical units,
determined the ratio between the units of electrostatic and electromagnetic charge, and
devised a law of electrical force (later replaced by Maxwell’s field theory). He went on to
investigate electrodynamics and the nature and role of electric charge.

C.4 History and Future of the Imperial Sys-
tem

C.4.1 History of the Imperial units
[from www.unc.edu/~rowlett/units;
© Russ Rowlett and the University of North Carolina at Chapell Hill]

Distance

In all traditional measuring systems, short distance units are based on the dimensions of
the human body. The inch represents the width of a thumb; in fact, in many languages,
the word for ‘inch’ is also the word for ‘thumb’. The foot (12 inches) was originally the
length of a human foot, although it has evolved to be longer than most people’s feet. The
yard (3 feet) seems to have gotten its start in England as the name of a 3-foot measuring
stick, but it is also understood to be the distance from the tip of the nose to the end of
the middle finger of the outstretched hand. Finally, if you stretch your arms out to the
sides as far as possible, your total ‘arm span’, from one fingertip to the other, is a fathom
(6 feet).

Historically, there are many other ‘natural units’ of the same kind, including the digit
(the width of a finger, 0.75 inch), the nail (length of the last two joints of the middle
finger, 3 digits or 2.25 inches), the palm (width of the palm, 3 inches), the hand (4 inches),
the shaftment (width of the hand and outstretched thumb, 2 palms or 6 inches), the span

4[ hO:s paU@r] an imperial unit of power (symbol hp) equal to 550 foot-pounds per
second (about 750 W).
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(width of the outstretched hand, from the tip of the thumb to the tip of the little finger,
3 palms or 9 inches), and the cubit (length of the forearm, 18 inches).

In Anglo-Saxon England (before the Norman conquest of 1066), short distances seem
to have been measured in several ways. The inch (ynce) was defined to be the length of
3 barleycorns, which is very close to its modern length. The shaftment was frequently
used, but it was roughly 6.5 inches long. Several foot units were in use, including a foot
equal to 12 inches, a foot equal to 2 shaftments (13 inches), and the ‘natural foot’ (pes
naturalis, an actual foot length, about 9.8 inches). The fathom was also used, but it did
not have a definite relationship to the other units.

When the Normans arrived, they brought back to England the Roman tradition of a
12-inch foot. Although no single document on the subject can be found, it appears that
during the reign of Henry I (1100–1135) the 12-inch foot became official, and the royal
government took steps to make this foot length known. A 12-inch foot was inscribed on
the base of a column of St. Paul’s Church in London, and measurements in this unit were
said to be ‘by the foot of St. Paul’s’ (de pedibus Sancti Pauli). Henry I also appears to
have ordered construction of 3-foot standards, which were called ‘yards,’ thus establishing
that unit for the first time in England. William of Malmsebury [ mA:zb@rI] wrote that
the yard was ‘the measure of his [the king’s] own arm,’ thus launching the story that the
yard was defined to be the distance from the nose to the fingertip of Henry I. In fact,
both the foot and the yard were established on the basis of the Saxon ynce, the foot being
36 barleycorns and the yard 108.

Meanwhile, all land in England was traditionally measured by the gyrd or rod, an
old Saxon unit probably equal to 20 ‘natural feet’. The Norman kings had no interest in
changing the length of the rod, since the accuracy of deeds and other land records depended
on that unit. Accordingly, the length of the rod was fixed at 5.5 yards (16.5 feet). This was
not very convenient, but 5.5 yards happened to be the length of the rod as measured by
the 12-inch foot, so nothing could be done about it. In the Saxon land-measuring system,
40 rods make a furlong (fuhrlang), the length of the traditional furrow (fuhr) as ploughed
by ox teams on Saxon farms. These ancient Saxon units, the rod and the furlong, have
come down to us today with essentially no change.

Longer distances in England are traditionally measured in miles. The mile is a Roman
unit, originally defined to be the length of 1000 paces of a Roman legion. A ‘pace’ here
means two steps, right and left, or about 5 feet, so the mile is a unit of roughly 5000 feet.
For a long time no one felt any need to be to precise about this, because distances longer
than a furlong did not need to be measured exactly. It just didn’t make much difference
whether the next town was 21 or 22 miles away. In medieval England, various mile units
seem to have been used. Eventually, what made the most sense to people was that a mile
should equal 8 furlongs, since the furlong was an English unit roughly equivalent to the
Roman stadium and the Romans had set their mile equal to 8 tadia. This correspondence
is not exact: the furlong is 660 English feet and the stadium is only 625 slightly-shorter
Roman feet.

In 1592, Parliament settled this question by setting the length of the mile at 8 furlongs,
which works out to 1760 yards or 5280 feet. This decision completed the English distance
system. Since this was just before the settling of the American colonies, British and
American distance units have always been the same.
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Reorganisations

Out of the welter 5 of medieval [ medI i:vl] weights and measures emerged several national
systems, reformed and reorganized from time to time; ultimately nearly all these were
replaced by metric. In Britain and its American colonies, however, the ancient system
survived.

By the time of Magna Carta 6 (1215), abuses of weights and measures were so common
that a clause was inserted in the charter to correct those on grain and wine. A few years
later a royal ordinance [ O:dIn@ns] entitled ‘Assize [@ saIz] of Weights and Measures’ defined
a broad list of units and standards [ stænd@d] so successfully that it remained in force
nearly 600 years. [ . . . ]

The sets of standards, which were sent out from London to the provincial towns, were
usually of bronze or brass. Discrepancies 7 [dIs krep@nsI] somehow crept into the system,
and in 1496, following a Parliamentary inquiry, new standards were made and sent out, a
procedure repeated in 1588, under Elizabeth I 8.

In 1592, Parliament settled the question of the mile by setting the length of the mile
at 8 furlongs, which works out to 1760 yards or 5280 feet. This decision completed the
English distance system. Since this was just before the settling of the American colonies,
British and American distance units have always been the same.

No revision of law was found necessary for 200 years after Elizabeth’s time, but several
refinements and redefinitions were added. E. Gunter 9, a 17th-century mathematician,
conceived the idea of taking the acre’s breadth (4 perches [p3:tS], or 22 yards), calling it a
chain, and dividing it into 100 links.

The Act of 1878 redefined the yard: ‘the straight line or distance between the centres of
two gold plugs or pins in the bronze bar [ . . . ] measured when the bar is at the temperature
of sixty-two degrees of Fahrenheit’s thermometer, and when it is supported by bronze
rollers placed under it in such a manner as best to avoid flexure of the bar.’

From 1893 until 1959, the yard was defined as equalling exactly 3600/3937 meter. In
1959 a small change was made in the definition of the yard to resolve discrepancies. Since
then the yard is defined as being equal exactly to 0.9144 meter. At the same time it was
decided that any data expressed in feet derived from geodetic surveys within the USA
would continue to bear the relationship as defined in 1893. This foot is called the US
survey foot, while the foot defined in 1959 is called the international foot.

5[ welt@r]: a state of general confusion; (followed by of ) a disorderly mixture or contrast.
6Magna Carta [ mægn@ kæt@] also Magna Charta [ tSA:t@]: the English political charter

which King John was forced to sign by his rebellious barons at Runnymede [ r2nI mi:d]
— a meadow on the south bank of the Thames at Egham [ eg@m] near Windsor, Surrey.
The barons were led by Archbishop Langton to frame a charter which effectively redefined
the limits of royal power.

7discrepancy: difference; failure to correspond; inconsistency
8(1533–1603), daughter of Henri VIII, queen of England and Ireland 1558–1603.
9Edmund Gunter [ edm@nd g2nt@] 1581–1626.
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Area

In all the English-speaking countries, land is traditionally measured by the acre, a very
old Saxon unit which is either historic or archaic, depending on your point of view. There
are references to the acre at least as early as the year 732. The word ‘acre’ also meant
‘field’, and as a unit an acre was originally a field of a size that a farmer could plough in
a single day. In practice, this meant a field that could be ploughed in a morning, since
the oxen had to be rested in the afternoon. Most area units were eventually defined to be
the area of a square having sides equal to some simple multiple of a distance unit, like the
square yard. But the acre was never visualised as a square. An acre is the area of a long
and narrow Anglo-Saxon farm field, one furlong (40 rods) in length but only 4 rods wide.
This works out, very awkwardly indeed, to be exactly 43, 560 square feet . If we line up
10 of these 4 × 40 standard acres side by side, we get 10 acres in a square furlong, and
since the mile is 8 furlongs there are exactly 10× 8× 8 = 640 acres in a square mile.

Weight

The basic traditional unit of weight, the pound, originated as a Roman unit and was used
throughout the Roman Empire. The Roman pound was divided into 12 ounces, but many
European merchants preferred to use a larger pound of 16 ounces, since a 16-ounce pound
is conveniently divided into halves, quarters, or eighths. During the Middle Ages there
were many different pound standards in use, some of 12 ounces and some of 16. The use of
these weight units naturally followed trade routes, since merchants trading along a certain
route had to be familiar with the units used at both ends of the trip.

In traditional English law the various pound weights are related by stating all of them
as multiples of the grain, which was originally the weight of a single barleycorn. Thus
barleycorns are at the origin of both weight and distance units in the English system.

The oldest English weight system has been used since the time of the Saxon kings. It
is based on the 12-ounce troy pound, which provided the basis on which coins were minted
and gold and silver were weighed. Since Roman coins were still in circulation in Saxon
times, the troy system was designed to model the Roman system directly. The troy pound
weighs 5760 grains, and the ounces weigh 480 grains, which is the traditional weight of the
silver coin called the shilling. The shilling was equal to 20 pence (pennies), and therefore
a pennyweight is 480/20 = 24 grains. The troy system continued to be used by jewellers
and also by druggists until the nineteenth century. Even today gold and silver prices are
quoted by the troy ounce in financial markets everywhere.

Since the troy pound was smaller than the commercial pound units used in most of
Europe, medieval English merchants often used a larger pound called the ‘mercantile’
pound (libra mercatoria). This unit contained 15 troy ounces, so it weighed 7200 grains.
This unit seemed about the right size to merchants, but its division into 15 parts, rather
than 12 or 16, was very inconvenient. Around 1300 the mercantile pound was replaced
in English commerce by the 16-ounce avoirdupois pound. This is the pound unit still in
common use in the USA and UK. Modelled on a common Italian pound unit of the late
thirteenth century, the avoirdupois pound weighs exactly 7000 grains. The avoirdupois
ounce, 1/16 pound, is divided further into 16 drachms. Unfortunately, the two English
ounce units don’t agree: the avoirdupois ounce is 7000/16 = 437.5 grains while the troy
ounce is 5760/12 = 480 grains. Conversion between troy and avoirdupois units is so
awkward, no one wanted to do it. The troy system quickly became highly specialised,
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used only for precious metals and for pharmaceuticals, while the avoirdupois pound was
used for everything else.

Since at least 1400 a standard weight unit in Britain has been the hundredweight,
which is equal to 112 avoirdupois pounds rather than 100. There were very good reasons
for the odd size of this ‘hundred’: 112 pounds made the hundredweight equivalent for most
purposes with competing units of other countries, especially the German Zentner and the
French quintal. Furthermore, 112 is a multiple of 16, so the British hundredweight can
be divided conveniently into 4 quarters of 28 pounds, 8 stone of 14 pounds, or 16 cloves
of 7 pounds each. The ton, originally a unit of wine measure, was defined to equal
20 hundredweight or 2240 pounds.

During the nineteenth century, an unfortunate disagreement arose between British
and Americans concerning the larger weight units. Americans, not very impressed with
the history of the British units, redefined the hundredweight to equal exactly 100 pounds.
The definition of the ton as 20 hundredweight made the disagreement carry over to the size
of the ton: the British ‘long’ ton remained at 2240 pounds while the American ‘short’ ton
became exactly 2000 pounds. (The American hundredweight became so popular in com-
merce that British merchants decided they needed a name for it; they called it the cental.)
Today, most international shipments are reckoned in metric tons, which, coincidentally,
are rather close in weight to the British long ton.

Volume

The names of the traditional volume units are the names of standard containers. Until the
eighteenth century, it was very difficult to measure the capacity of a container accurately
in cubic units, so the standard containers were defined by specifying the weight of a
particular substance, such as wheat or beer, which they could carry. Thus the gallon, the
basic English unit of volume, was originally the volume of eight pounds of wheat. This
custom led to a multiplicity of units, as different commodities were carried in containers
of slightly different sizes.

Gallons are always divided into 4 quarts, which are further divided into 2 pints each.
For larger volumes of dry commodities, there are 2 gallons in a peck and 4 pecks in a
bushel. Larger volumes of liquids were carried in barrels, hogsheads, or other containers
whose size in gallons tended to vary with the commodity, with wine units being different
from beer and ale units or units for other liquids.

The situation was still confused during the American colonial period, so the Americans
were actually simplifying things by selecting just two of the many possible gallons. These
two were the gallons that had become most common in British commerce by around 1700.
For dry commodities, the Americans were familiar with the ‘Winchester bushel,’ defined
by Parliament in 1696 to be the volume of a cylindrical container 18.5 inches in diameter
and 8 inches deep. The corresponding gallon, 1/8 of this bushel, is usually called the ‘corn
gallon’ in England. This corn gallon holds 268.8 cubic inches.

For liquids Americans preferred to use the traditional British wine gallon, which Par-
liament defined to equal exactly 231 cubic inches in 1707. As a result, the US volume
system includes both ‘dry’ and ‘liquid’ units, with the dry units being about 1/6 larger
than the corresponding liquid units.

In 1824, the British Parliament abolished all the traditional gallons and established a
new system based on the ‘Imperial’ gallon of 277.42 cubic inches. The Imperial gallon was
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designed to hold exactly 10 pounds of water under certain specified conditions. Unfortu-
nately, Americans were not inclined to adopt this new, larger gallon, so the traditional
English ‘system’ actually includes three different volume measurement systems: US liquid,
US dry, and British Imperial.

On both sides of the Atlantic, smaller volumes of liquid are traditionally measured in
fluid ounces, which are roughly equal to the volume of one ounce of water. To accomplish
this in the different systems, the smaller US pint is divided into 16 fluid ounces, and the
larger British pint is divided into 20 fluid ounces.

C.4.2 Metrication in the UK
[from www.metric.org.uk; UK Metrication Association]

Parliament first debated the metric system on 13th April 1790. This was when par-
liamentarian Sir John Riggs Miller [Britain] and the Bishop of Autum, Prince Talleyrand
[France] put to the British Parliament and French Assembly respectively, the proposition
that the two countries should cooperate to equalise their weights and measures, by the
joint introduction of the metric system.

There was no immediate progress although there were many positive debates in the
second half of the 19th Century. For example, 1st July 1863 the Bill for a compulsory
change to the metric system was approved by 110 votes to 75 votes.

The following year, 9th March 1864, the House of Lords debated a Bill to permit the
use of metric weights and measures in trade. One supporter noted that Englishmen were
notorious for liking old terms and old habits and he hoped that the new nomenclature
would not be diverted by attempts at ridicule. Parliament passed the Bill and this became
the Metric Weights and Measures Act 1864. On the 24th February 1868 a parliamentary
proposal to set Imperial cut-off dates was withdrawn on promise of a Royal Commission
of enquiry. The Enquiry Report was positive, and on the 26th July 1871 Britain almost
became a metric country. The government lost the Bill to make metric compulsory after
two years, by only 82 votes to 77 votes. An argument that might have influenced oppo-
nents was a plea that Britain would be ‘letting down America and our colonies’ who had
harmonised their systems with the ones in use in Britain10.

There were further debates, and near misses, in the UK Parliament in 1872 and 1896,
before a comprehensive debate [ 21st June - 6th August 1897] concluded by legalising the
use of metric for all purposes. There were no contrary votes.

Metrication continued to be debated for the next 10 years. In 1904 The House of
Lords unanimously voted to make metric compulsory after two years. It was claimed
that the Austrian and German nations had successfully made metric compulsory with a
changeover time of only ‘one week’! The Government said they would not obstruct the
proposal, but the Bill was never adopted in the Commons. Two similar debates in 1907
failed. Conflicts in Europe put further political consideration of metrication out of mind
until the publication of a Government White Paper on Weights and Measures 10th May
1951. The 1951 White Paper was in fact the 28th Report put to Parliament during the
preceeding 100 years. This latest report was in response to the the Hodgson Committee
Report published in 1949. Eventually we had the Weights and Measures Act 1963; a long

10At that time the American Congress had emulated Britain by allowing contracts in
metric. A particularly strong USA advocate for metric was John Quincy Adams.
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series of Parliamentary questions to Ministers and the Federation of British Industries
[now the CBI11] lobby in favour of metrication in 1965. These initiatives culminated with
the creation of the Metrication Board in 1969 by Anthony Wedgewood Benn, Minister of
Technology. The target date for completion was end 1975. The transition to metrication
and the role of the Board were given positive support and encouragement by Geoffrey
Howe the responsible Minister of the new Government in 1972. Indeed at that time, and
until circa 1977-1978, there was good, sensible and steady progress.

Prepackaged food changed but the really difficult issue to emerge affected retailers of
‘loose weight’ products. The retail problem was that metric prices would always appear
to be more expensive than their nearest Imperial equivalent.

The product which brought all voluntary retail initiatives to a full stop was the ex-
perience of the floor covering and carpet retailers. Their 1975 change to sales by the sq.
metre started well, but in 1977 one of the major High Street retailers found enormous
commercial advantage in reverting to sales by the square yard. Consumers could not be
persuaded to believe that goods costing, for example, £10 per square yard or £12 per
square metre were virtually priced the same. Consumers bought, in very significant vol-
ume, the apparently cheaper priced imperial version. Metrication of carpet sales entered
into full scale reverse and the Chambers of Trade and retail associations pressed for firm
Government leadership, i.e. compulsory cut-off. Then the political nerve began to fail.

The necessary Order, drafted by the Board of Trade in 1978, was agreed by a huge
range of retail trade, industry, engineering, consumer, trade union, elderly person, sporting
and educational organisations and . . . the overwhelming number of parliamentarians. A
small number of critics, in each political party, did voice opposition to the element of
compulsion but this seemed to come from a relatively small minority within the Eurosceptic
movement.

However, the initiative was in the hands of Secretary of State for Trade, Roy Hattersley
and a General Election was expected in 1979. Labour lost the election and Margaret
Thatcher became Prime Minister.

One Conservative backbencher, Sally Oppenheim had been almost the lone but per-
sistent critic of the metric programme. Ironically she was appointed junior Minister of
Consumer Affairs at the DTI and then metrication was added to her portfolio. In letters
to MP’s and associations she made it clear [a] she was not opposed the metrication in
principle, [b] metrication was not the result of Britain’s accession to the EEC but [c] she
did object to measures which would compel people to adopt metric against their will.
Proponents of metrication, trade and consumer organisations, officials and the Metrica-
tion Board explained and argued that a voluntary change at retail level was absolutely
impossible . . . it could never happen. It was a recipe for confusion, waste and duplica-
tion. Government had to lead over the last hurdle. It did, it led backwards. In 1980 the
Metrication Board was abolished.

In truth the Metrication Board had little else to do. Every possible programme had
been agreed, consumer information campaigns composed and there was nothing to do until
or unless a date was fixed for the completion of the transition. We little knew then the die
was set for a further 20 years of waste, confusion and argument. Successive DTI Ministers
did nothing to inform consumers or public opinion. They did nothing to refute the new ‘big
lie’ namely, that Britain was being forced to change because of the European Commission.
In fact, during the past 20 years most Commission Officials, European Politicians and

11Confederation of British Industry
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businesses in Continental Europe ‘couldn’t have given a damn’ whether Britain changed
to the metric system or not. They seemed to quite like the idea of Britain shooting itself
in its economic foot, by imposing upon itself the extra costs and waste of maintaining a
dual system. For twenty years not one single British Minister has attempted to explain
the advantages of metrication. Most tried to pretend or imply they were protecting our
British culture from the European bully.

Jim Humble obe12, Director of the Metrication Board (1978–1980)
However, the government had already signed up to the European Directive 71/354

to harmonise our units of measurement by requiring SI. This resulted in several further
Directives which set out transition dates for phasing out most non-metric units. UK
legislation was then amended to enact these changes. 1995 saw the removal of the pound
(weight) and pint for labelling pre-packed goods.

Perhaps the most significant change took place at the end of 1999; as of January 1st
2000 it has no longer been legal to sell loose products (vegetables, fruit, cheese, meat, nails,
ground coffee, etc.) by reference to the ounce, pound, pint or gallon (with the exception
of draught beer). Pints of beer are usually spoken about in the same breath as the pint
of milk in returnable containers, but there is one significant difference, in that it is now
perfectly legal to sell milk in metric sizes.

Although a great deal has happened in the UK over the past 30 years, there is still
a lot of ignorance of the current situation. Some people think it’s already gone too far,
others don’t seem to be aware of what has actually happened. One school of thought is
that SI (metric) is OK for some fields, e.g. scientific and engineering endeavours, but it is
not suitable for others. For example, as Britain is an island, and the design of our road
signs doesn’t affect how we do trade with the rest of the world, it is not necessary for road
signs to convert to metric. However, SI is a coherent system of units, and including non-
metric units defeats the point. We buy our petrol by the litre, so it’s easier to calculate
consumption using kilometres; coaches and trucks have odometers recording kilometres,
and speedometers showing km/h (not kph, please!) in prominent form. The argument also
ignores the fact that the UK shares a border with Ireland, which has largely converted its
distance signs, and is planning to change its speed limit signs in 2001.

12Officer of the Order of the British Empire
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Vocabulary

Remark: A dag (†) shows at the end of a line if an example or an explanation
is provided about the English word given in the line. The reader will find the
example or explanation after the current table.

School
school subject sku:l s2bdZIkt matière scolaire
curriculum plur. -la k@ rIkj@l@m -l@ programme †
syllabus plur. -bi sIl@b@s - baI programme †

curriculum : the subjects that are studied or prescribed for study in a
school. [21]

stream : (Brit.) a group of shoolchildren taught together as being of
similar ability for a given age. [20]
syllabus : 1 the programme or outline of a course study, teaching, etc.
2 the statement of the requirements for a particular examination. [21]

For example: ‘To use this book most effectively you need to know which Study Units
are in your course, and which are not. Therefore you need to identify the syllabus you are
studying.’ p. vi [11]

School stationery
stationery steIS@n@rI fournitures †
school-bag sku:lbæg sac d’école
tracing paper treIsIŋ peIp@r papier calque
cardboard kA:dbO:d carton
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School stationery — continued
textbook teks(t)bUk manuel
exercise book eks@saIz bUk cahier de devoirs
copybook k6pIbUk cahier
notebook n@UtbUk bloc-note, cahier, carnet
writing pad raItIŋpæd bloc-note, cahier, carnet
jotter dZ6t@r cahier de brouillon
binder baInd@r classeur
sheet Si:t feuille
folder f@Uld@r chemise
pencil pensl crayon
pencil-case pensl keIs trousse
pencil-sharpener pensl sA:pn@r taille-crayon
fountain pen faUntInpen stylo plume
ballpoint (pen) bO:lpOInt (pen) stylo (à bille)
crayon kreI@n crayon de couleur
box of colors b6ks @v k2l@z boite de peinture
biro baI(@)r@U bic
felt-tip pen feltIp pen feutre
eraser I reIz@r effaceur, gomme
rubber r2b@r gomme
ruler ru:l@r règle
(a pair of) compasses (@ pe@r @v) k2mp@sIz compas
(set) square (set) skwe@r équerre
(pocket) calculator kælkjUleIt@r calculatrice
glue or paste glu: / peIst colle
paperclip peIp@klIp trombone
protractor pr@ trækt@r rapporteur

Stationer : a person who sells writing materials etc. [20]
Stationery : writing materials etc. sold by a stationer. [20]

The ISO 1 specifies an ‘A’ size series [ sI@ri:z] of drawing sheets for tech-
nical drawing. The basic A0 sheet has an area of 1 square metre. Other A

1International Organization for Standardization
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size sheets are A1, A2, A3, A4 and A5. All A size sheets have their edge
lengths in the same proportion. [35]

Papers are commonly measured by their weight — known as so many
grams per square metre — sgm. . . . Papers suitable for technical drawings
are: Cartridge paper – a good quality paper for pencil drawings . . . ; De-
tail paper – a lighter paper for pencil and colour work . . . ; Grid papers
. . . Square, isometric and perspective grids. Tracing paper; Papers and
boards for ink work . . . [35]
Erasers : essential for correcting mistakes. Vinyl [ vaInIl] erasers are
preferable to rubber erasers – they make a cleaner job of ‘rubbing out’. Be
careful of rubber dust formed when erasing from pencil drawing. It can be
a source of annoyance causing smudges [ sm2dZIz] (tache, bavure) on your
drawing if it is allowed to accumulate unnecessarily. [35]
Pencils : can be purchased in nine grades of ‘hardness’ — from H to
9H — and six grades of ‘blackness’ — from B to 6 B. There are also two
other grades — F and HB . . .Many draughtsmen like to sharpen their 2H
pencils to a ‘chisel’ point and their HB pencils to a round point. [35]

Punctuation marks
punctuation mark p2ŋktSU eISn mA:k signe de ponctuation
full stop fUl st6p point
period (US) pI@rI@d point
comma k6m@ virgule
dash dæS tiret —
apostrophe @ p6str@fI apostrophe
exclamation mark ekskl@ meISn mA:k point d’exclamation
question mark kwestS@n mA:k point d’interrogation
colon k@Ul@n deux points :
semicolon semI k@Ul@n point-virgule
dot d6t point décimal†
inverted commas In v3:tId — ‘ ’
solidus -di s6lId@s - daI barre oblique /
slash slæS barre oblique
ellipsis I lIpsIs points de suspension ...
hyphen haIf@n trait d’union
ampersand æmp@ sænd esperluète &
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Dot the i’s and cross the t’s: (colloquial) 1 be minutely accurate, emphasize
details. 2 add the final touches to a task, exercise, etc.
Dotted line : a line of dots on a document, especially to show a place left
for a signature.

The inverted commas are also known as quotation marks or quotes which
is an abbreviation of the preceding words. Usually in British English quo-
tations are given thus: ‘Why does he use the word “déjà vu”?’. The more
common quotation marks are the single ones. In the USA, we usually find:
“Why does he use the word ‘déjà vu’?”.

Sciences
science saI@ns science
natural science nætSr(@)l sciences naturelles
physics fIzIks physique
physicist fIzIsIst physicien
mathematics mæT mætIks mathématiques
mathematician mæTm@ tISn mathématicien
biology baI 6l@dZI biologie
chemistry kemIstrI chimie
geography dZI 6gr@fI géographie
geology dZI 6l@dZI géologie

Reasoning and reckoning
reasoning ri:z@nIŋ raisonnement
definition defI nISn définition
axiom æksI@m axiome
to assume @ sju:m supposer
assumption @ s2mSn supposition
to conjecture k@n dZektS@r conjecturer †
hypothesis plur. -ses haI p6TIsIs -si:z hypothèse
conclude k@n klu:d conclure
conclusion k@n klu:Zn conclusion
condition k@n dISn condition
conditional k@n dISnl conditionnel
consequence k6nsIkw@ns consequence
converse k6nv3:s réciproque (nom)
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Reasoning and reckoning — continued
conversely k6n v3:slI réciproquement
to imply Im plaI impliquer
implication ImplI keISn implication
then ðen alors
therefore or therefor ðe@fO:r donc
for fO:r car (conj. coord.)
if If si
if and only if si et seulement si
equivalent I kwIv@l@nt équivalent
equivalence I kwIv@l@ns équivalence
statement steItm@nt énoncé, affirmation
to state steIt affirmer, énoncer
proposition pr6p@ zISn proposition
theorem TI@r@m théorème
corollary k@ r6l@rI corollaire
proof pru:f preuve, démonstration
to prove pru:v démontrer
to demonstrate dem@nstreIt démontrer
to deduce dI dju:s déduire
hint hInt indication
truth tru:T vérité
true tru: vrai
false fO:ls faux
to determine dI t3:mIn déterminer
to calculate kælkjUleIt calculer
calculation kælkjU leISn calcul
to reckon rek@n compter, calculer
reckoning rek@nIŋ compte, calcul
to classify klæsIfaI classer
calculator kælkjUleIt@r calculatrice
key ki: touche
memory mem@rI mémoire
to store stO:r mettre en mémoire
programmable pr@U græmbl programmable
computer k@m pju:t@r ordinateur
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Reasoning and reckoning — continued
algorithm ælg@rIð@m algorithme
program pr@Ugræm programme
instruction In str2kSn instruction
step pas (de programme)
jump dZ2mp saut
loop lu:p boucle
input InpUt entrée
output aUtpUt sortie
display dI spleI affichage
to display dI spleI afficher
bit bIt bit
byte baIt octet
word w3:d mot
flowchart fl@U tSA:t ordinogramme
software s6ftwe@r logiciel
abacus æb@k@s boulier, abaque
database deIt@beIs base de données
spreadsheet spredSi:t tableur
wordprocessor w3:d pr@Uses@r traitement de texte
to estimate estImeIt estimer
estimation estI meISn estimation
to evaluate I væljUeIt évaluer
evaluation I væljU eISn évaluation
rule ru:l règle
exception Ik sepSn exception
formula plur. -lae fO:mjUl@ -lI formule
to generalize dZenr@laIz généraliser
generalization dZenr@laI zeISn généralisation
interpolation In t3:p@U leISn interpolation
investigation In vestI geISn recherche
to satisfy sætIsfaI vérifier †
to fulfil fUl fIl vérifier †

To satisfy : to fulfil the conditions of a given theorem, assumption, equa-
tion, etc. For example, 3 and −3 satisfy the equation x2 = 9.
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Subject : the term in a formula that is explicitly found by substituting
values for the other variables. For example S is the subject of the formula
S = 4πr3

3 .
Conjecture : a suggestion based on investigation of some rule or pattern
in a problem.

Geometry
geometry dZI 6m@trI géométrie
geometric dZI@U metrIk géométrique
construction k@n str2kSn construction
to construct k@n str2kt construire
plane pleIn plan
point pOInt point
line laIn droite
polygon p6lIg@n polygone
regular regjUl@r régulier
parallel pær@lel parallèle
perpendicular p3:pen dIkjUl@r perpendiculaire
ray reI demi-droite
segment segm@nt segment
beginning point bI gInIŋ — extrémité
endpoint endpOInt extrémité
midpoint mIdpOInt milieu
triangle traIæŋgl triangle
isosceles aI s6sIli:z isocèle
equilateral i:kwI læt(@)r(@)l équilatéral
oblique @ bli:k quelconque
scalene skeIli:n quelconque
vertex plur. -tices v3:teks -tIsi:z sommet
median mi:dI@n médiane
altitude æltItju:d hauteur
mid-perpendicular mId p3:pen dIkjUl@r médiatrice
perpendicular bisector – baI sekt@r médiatrice
incircle Ins3:l(@)l cercle inscrit
incentre Insent@r centre du . . .
circumcircle s3:k@m s3:kl cercle circonscrit
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Geometry — continued
circumcentre s3:k@m sent@r centre du . . .
orthocentre O:T@U sent@r orthocentre
centroid sentrOId centre de gravité
angle æŋgl angle
degree dI gri: degré
acute @ kju:t aigü
right raIt droit
obtuse @b tju:s obtus
angle bisector æŋgl baI sekt@r bissectrice
right triangle raIt — triangle rectangle
hypotenuse haI p6t@nju:z hypoténuse
adjacent @ dZeIs@nt adjacent
opposite 6p@zIt opposé
trigonometry trIg@ n6m@trI trigonométrie
sine saIn sinus
cosine k@UsaIn cosinus
tangent tændZ@nt tangente
quadrilateral kw6drI læt(@)r(@)l quadrilatère
trapezoid træpIzOId quadrilatère
trapezium tr@ pi:zI@m trapèze
parallelogram pæræ lel@græm parallèlogramme
rhombus plur. -bi r6mb@s -baI losange
rectangle rek tæŋgl rectangle (nom)
square skwe@r carré
diagonal daI æg@nl diagonale
area e@rI@ aire
perimeter pe rImIt@r périmètre
circumference s@ k2mf(@)r(@)ns circonférence
circle s3:kl cercle
semicircle semI s3:kl demicercle
centre sent@r centre
radius plur. -dii reIdI@s -dI aI rayon (d’un cercle)
diameter daI æmIt@r diamètre
chord kO:d corde
arc A:k arc (de cercle)
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Geometry — continued
semicircle semI s3:kl demicercle
annulus plur. -li ænjUl@s -laI couronne (circulaire)
ellipse I lIps ellipse
oval @Uv@l ovale
to bisect baI sekt couper en deux moitiés
analytic geometry æn@ lItIk — géométrie analytique
coordinate k@U O:dn@t coordonnée
coordinate geometry géométrie analytique
abscissa plur. -sae æ bsIs@ -si: abscisse
ordinate O:dn@t ordonnée
quadrant kw6dr@nt quadrant
coordinate system repère
basis plur. -ses beIsIs -si:z base
orthogonal O: T6g(@)n(@)l orthogonal
orthonormal O:T@ nO:m(@)l orthonormal
normalized nO:m@laIzd normé ou normal
axis plur. axes æksIs æksi:z axe
gradient greIdI@nt pente ou coefficient

directeur
slope sl@Up pente ou coefficient

directeur
transformation trænsf@ meISn transformation
translation træns leISn translation
vector vekt@r vecteur
sense sens sens
direction dI rekSn direction
modulus (of a vector) m6djUl@s norme
magnitude (of a vector) mægnItju:d norme
length (of a vector) norme
reflection rI flekSn symétrie
enlargement In lA:dZm@nt agrandissement
locus plur. -ci l@Uk@s -saI lieu
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Solid geometry
solid geometry s6lId — géométrie dans l’espace
stereometry sterI 6mItrI géométrie dans l’espace
cone k@Un cône
conical k6nIkl conique (adj)
conic section k6nIk sekSn (une) conique
cube kju:b cube
cuboid kju:bOId pavé droit
cylinder sIlInd@r cylindre
cylindrical sI lIndrIkl cylindrique
circular cylinder s3:kjUl@r — cylindre de révolution
edge edZ arête
face feIs face
frustum plur. -ta fr2st@m -t@ tronc
conical frustum tronc de cône
horizon h@ raIzn horizon
horizontal h6rI z6ntl horizontal
vertical v3:tIkl vertical
polyhedron plur. -dra p6lI hi:dr@n -dr@ polyèdre 2

tetrahedron tetr@ hi:dr@n tétraèdre
octahedron 6kt@ hi:dr@n octaèdre
dodecahedron d@Udek@ hi:dr@n dodecaèdre
icosahedron aIk@s@ hi:dr@n icosaèdre
pictorial drawing pIk tO:rI@l drO:Iŋ dessin en perspective
perspective drawing p@ spektIv — dessin en perspective
cabinet drawing kæbInIt — perspective cavalière
plan plæn vue de dessus
pyramid pIr@mId pyramide
skew lines skju: — droites non coplanaires
sphere sfI@r sphère
spheric sfI@rIk sphérique
spherical sferIkl sphérique
great circle greIt — grand cercle
volume v6lju:m volume

2the following words finishing with hedron have the same irregular plural in hedra
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Arithmetic
arithmetic @ rITm@tIk arithmétique (nom)
arithmetic ærIT metIk arithmétique (adj.)
arithmetical ærIT metIkl arithmétique (adj.)
number n2mb@r nombre
figure fIg@r chiffre
digit dIdZIt chiffre
Roman numeral r@Um@n nju:m(@)r(@)l chiffre romain
whole number h@Ul entier
integer IntIdZ@r entier relatif
directed number dI rektId entier relatif
rational ræS@nl rationnel
ratio reISI@U rapport
irrational I ræS@nl irrationnel
positive p6z@tIv positif
negative neg@tIv négatif
null n2l nul
addition @ dISn addition
plus pl2s plus
sum s2m somme
summand s2 mænd terme
addend @ dend terme
carry kærI retenue
term t3:m terme
subtraction s@b trækSn soustraction
minus maIn@s moins
difference dIfr@ns différence
multiplication m2ltIplI keISn multiplication
times taImz fois
multiplied by m2ltIplaId baI multiplié par
product pr6d2kt produit
factor fækt@r facteur
factorize fækt@ raIz factoriser
factorization fækt@raI zeISn factorisation
division dI vIZn division
divisor dI vaIz@r diviseur
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Arithmetic — continued
dividend dIvI dend dividende
remainder rI meInd@r reste
unity ju:n@tI unité
divided by dI vaIdId divisé par
over @Uv@r sur
quotient kw@USnt quotient
multiple m2ltIpl multiple
divisible dI vIz@bl divisible
prime praIm premier
H.C.F. PGCD
highest common factor plus grand commun

diviseur
L.C.M. PPCM
lowest common
multiple

plus petit commun
multiple

even i:vn pair
odd 6d impair
fraction frækSn fraction
numerator nju:m@reIt@r numérateur
denominator dI n6mIneIt@r dénominateur
inverted In v3:tId inversée
to invert In v3:t inverser
to cancel kænsl simplifier †
to simplify sImplIfaI simplifier
equals i:kw@lz égale
is equal to i:kw@l est égal à
inverse In v3:s
additive inverse ædItIv opposé
multiplicative inverse m2ltI plIk@tIv inverse
reciprocal rI sIpr@kl inverse
squared skwe@d carré
cubed kju:bd cube
a to the power n paU@r a (à la) puissance n
exponent Ik sp@Un@nt exposant
index plur. -dices Indeks –dIsi:z exposant
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Arithmetic — continued
square root of skwe@ ru:t @v racine carrée de
radical sign rædIkl saIn radical
to square skwe@r mettre au carré
inequality InI kw6l@tI inégalité
less than les <

less than or equal to ≤
not greater than ≤
greater than greIt@r >

greater than or equal to ≥
not less than ≥
to arrange @ reIndZ ranger
to order O:d@r ordonner
to rank ræŋk ordonner
bracket brækIt crochet, parenthèse,

accolade
brace breIs accolade
(square) bracket crochet
parenthesis plur. -ses p@ renTIsIs -si:z parenthèse
approximately equal to @ pr6ksIm@tlI ≈
percentage p@ sentIdZ pourcentage
per cent p@ sent pourcent %
per mil p@ mIl pour mille %�
per mille p@ mIlI pour mille
quantity kw6nt@tI quantité
absolute value æbs@lu:t vælju: valeur absolue
modulus -li m6djUl@s - laI valeur absolue
pair pe@r paire
ordered pair O:d@d — couple
standard form stænd@d fO:m notation scientifique
surd s3:d sourd 3

To cancel : to simplify a fraction by dividing both numerator and de-
nominator by the same number of variable which must be a common factor
of both of them. For example, the algebraic expression 5x/25 cancels to x/5
when divided top and bottom by 5.

3In French this word is obsolete in the present meaning.
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Surd : an expression containing the root of a number which is not a
perfect square. For example, √3.

Calculation
rounding raUndIŋ arrondi
truncating tr2ŋ keItIŋ troncation
approximate @ pr6ksIm@t approché
approximately @ pr6ksIm@tlI approximativement
to approximate @ pr6ksImeIt approcher
scale skeIl échelle
significant figure sI gnIfIk@nt fIg@r chiffre significatif
decimal place desIml — décimale
accurate ækjUreIt précis
accuracy ækjUr@sI précision
to tabulate tæbjUleIt tabuler
table teIbl tableau

Algebra
algebra ældZIbr@ algèbre
algebraic ældZI breIIk algébrique
to substitute a for b s2bstItju:t remplacer b par a
symbol sImbl symbole
value vælju: valeur
numerical nju: merIkl numérique
a variable ve@rI@bl une variable
an unknown 2n n@Un une inconnue
equation I kweIZn équation
to equate a to b I kweIt mettre a et b en

équation
linear equation lInI@r — équation linéaire ou du

premier degré
equality I kw6l@tI égalité
inequality InI kw6l@tI inégalité ; inéquation
inequation InI kweIZn inéquation
simultaneous equations sIml teInI@s système d’équations
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Algebra — continued
coefficient k@UI fISnt coefficient
a constant k6nst(@)nt une constante
expression Iks preSn expression
in terms of en fonction de
quadratic equation kw6 drætIk — équation du second

degré
to solve s6lv résoudre
solution s@ lu:Sn solution
solution set ensemble des solutions
to check tSek vérifier †

to check : Don’t forget to check your answer! Check any formulae with
the formula sheet, if provided.

Analysis
analysis @ næl@sIs analyse
function f2ŋkSn fonction
mapping mæpIŋ fonction
to map a onto b associer b à a
graph grA:f courbe représentative
grid grId quadrillage
to plot pl6t placer des points†
to sketch sketS esquisser †
sketch esquisse
increasing In kri:sIŋ (strictnt) croissant
decreasing di: kri:sIŋ (strictnt) décroissant
non-increasing décroissant (sens large)
non-decreasing croissant (sens large)
period pI@rI@d période
periodic pI@rI 6dIk périodique
affine @ faIn affine
linear lInI@r linéaire ou affine
parabola p@ ræb@l@ parabole
hyperbola plur. -lae haI p3:b@l@ -lI hyperbole
rectangular hyperbola rek tæŋgj@l@r hyperbole équilatère
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Analysis — continued
domain d@U meIn ensemble de définition

ou source
image ImIdZ image
pre-image or preimage pri: ImIdZ antécédent
counterimage kaUnt@ rImIdZ antécédent
argument A:gjUm@nt argument
turning point t3:nIŋ — extrémum
maximum plur. -ma mæksIm@m maximum
minimum plur. -ma mInIm@m minimum
constant k6nst@nt constant (adj.)
trigonometric function trIg@n@ metrIk fonction trigonométrique
circular function s3:kjUl@r fonction circulaire
radian reIdI@n radian

To plot : 1 to locate or mark points (on a graph) relative to a coordi-
nate system. 2 to draw (a curve) through these points.
Sketch : a rough drawing or graph in which the main features are
marked clearly.

Statistics
statistics st@ tIstIks statistiques
statistician stætI stISn statisticien
survey s3:vei enquête
to survey s3: vei enquêter
poll p@Ul sondage
harmonic hA: m6nIk harmonique
quadratic kw6 drætIk quadratique [kwa –]
mean mi:n moyenne
root mean square ru:t — skwe@r moyenne quadratique
average æv@rIdZ moyen(ne)
bar chart bA: tSA:t diagramme en bâtons
bimodal baI m@Udl bimodal(e)
class klA:s classe
interval Int@vl intervalle
datum plur. -ta deIt@m -t@ donnée(s)
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Statistics — continued
continuous data k@n tInjU@s — données continues
discrete data dI skri:t — données discrètes
frequency fri:kw@nsI effectif
cumulative frequency kju:mjUl@tIv — effectif cumulé
dispersion dI sp3:Sn dispersion
frequency polygon — p6lIg@n polygone des effectifs
histogram hIst@græm histogramme
index plur. -dices Indeks -dIsi:z index
range reIndZ étendue
quartile kwO:taIl quartile [kwa –]
line of best fit laIn @v best fIt droite d’ajustement
scatter diagram skæt@r daI@græm nuage de points
mean deviation — di:vI eISn écart absolu moyen
standard deviation stænd@d di:vI eISn écart-type
median mi:dI@n médiane
mode m@Ud mode
ogive @UdZaIv polygone des effectifs

cumulés (croissants)
percentile p@ sentaIl centile
pie chart paI — diagramme circulaire
population p6pjU leISn population
proportion pr@ pO:Sn proportion
proportional to pr@ pO:S@n@l t@ proportionnel à
lower quartile l@U@r — premier quartile
upper quartile 2p@r — troisième quartile
sample sA:mpl échantillon
relative frequency rel@tIv — fréquence
variable ve@rI@bl caractère
category kæt@g@rI catégorie
qualitative kw6lIt@tIv qualitative
quantitative kw6ntIt@tIv quantitative
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k−→u . . . . . . . . . . . . . . . . . . . 25

A
A size series . . . . . . . . . 111
AAA rule . . . . . . . . . . . . .18
abscissa . . . . . . . . . . . . 7, 89
absolute . . . . . . . . . . . . . . 13
error . . . . . . . . . . . . . . . 15
error bound . . . . . . . . 15
value . . . . . . . . . . . . . . . 13

acre . . . . . . . . . . . . . . . . . . 94
acute . . . . . . . . . . . . . . . . . 84
addend . . . . . . . . . . . . . . . . 3

addition . . . . . . . . . . . . . . . 3
adjacent . . . . . . . . . . . . . . 84
affine . . . . . . . . . . . . . . . . . 73
algebra . . . . . . . . . . . . . . . 49
alternate . . . . . . . . . . . . . 85
altitude. . . . . . . . . . . . . . .86
ampere . . . . . . . . . . . . . . . 97
Ampère . . . . . . . . . . . . . . 99
angle . . . . . . . . . . . . . . . . . 84
acute . . . . . . . . . . . . . . . 84
full . . . . . . . . . . . . . . . . . 84
obtuse. . . . . . . . . . . . . .84
right . . . . . . . . . . . . . . . 84
straight . . . . . . . . . . . . 84

anticlockwise . . . . . . . . . 90
apothecaries’ . . . . . . . . . 95
arc . . . . . . . . . . . . . . . . . . . 88
major . . . . . . . . . . . . . . 88
minor . . . . . . . . . . . . . . 88

Archimedes . . . . . . . . . . . 86
area . . . . . . . . . . . . . . . . . . 88
argument . . . . . . . . . . . . . 69
arithmetic . . . . . . . . . . . . 49
ASA rule . . . . . . . . . . . . . 18
avoirdupois . . . . . . . . . . . 93
axes . . . . . . . . . . . . . see axis
axis . . . . . . . . . . . . . . . . . . 90
x- . . . . . . . . . . . . . . . . . . 90
y- . . . . . . . . . . . . . . . . . . 90
real. . . . . . . . . . . . . . . . . .7

B
bar chart . . . . . . . . . . . . . 58
bar graph. . . . . . . . . . . . .58
base . . . . . . . . . . . . . . . . . . 86
basis . . . . . . . . . . . . . . . . . 26
beginning point . . . . . . . 22
belongs to . . . . . . . . . . . . . 4
bisector. . . . . . . . . . . . . . .85
angle . . . . . . . . . . . . . . . 85
perpendicular . . . 46, 85

boundary . . . . . . . . . . . . . 60
bu . . . . . . . . . . . . . . . . 92, 95
bushel . . . . . . . . . . . . 92, 95

C
cabinet drawing . . . . . . 44

cable . . . . . . . . . . . . . . . . . 91
cancel out . . . . . . . . . . . . . 5
candela . . . . . . . . . . . . . . . 97
cap . . . . . . . . . . . . . . . 11, 12
capacity . . . . . . . . . . . . . . 92
Cartesian . . . . . . . . . . . . . 90

coordinates . . . . . . . . . 90
plane . . . . . . . . . . . . . . . 90

categorical . . . . . . . . . . . . 56
category . . . . . . . . . . . . . . 56
census . . . . . . . . . . . . . . . . 54
centre . . . . . . . . . . . . . . . . 88
centroid . . . . . . . . . . . . . . 86
ch . . . . . . . . . . . . . . . . . . . . 94
chain . . . . . . . . . . . . . . . . . 94
chord . . . . . . . . . . . . . . . . . 88
circle . . . . . . . . . . . . . . . . . 88
circular . . . . . . . . . . . . . . . 76
circumcentre. . . . . . . . . .87
circumcircle . . . . . . . . . . 87
circumference . . . . . . . . . 88
circumscribed. . . . . . . . .87
class . . . . . . . . . . . . . . . . . . 60

interval . . . . . . . . . . . . .60
mark . . . . . . . . . . . . . . . 60
midpoint . . . . . . . . . . . 60
size . . . . . . . . . . . . . . . . 60
width . . . . . . . . . . . . . . 60

coefficient . . . . . . . . . . . . 50
collinear . . . . . . . . . . . . . . 83
complementary . . . . . . . 85
compose . . . . . . . . . . . . . . 40
composite . . . . . . . . . . 4, 40
composition . . . . . . . . . . 40
concave . . . . . . . . . . . . . . . 86
confidence

interval . . . . . . . . . . . . .67
level . . . . . . . . . . . . . . . .67

congruent. . . . . . . . . . . . .17
constant . . . . . . . . . . . . . . 72
continuous . . . . . . . . . . . . 56
convex . . . . . . . . . . . . 85, 88
coordinate

system . . . . . . . 6, 27, 89
coordinates . . . . . . . 27, 90

Cartesian. . . . . . . . . . .90
rectangular . . . . . . . . . 90
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coplanar . . . . . . . . . . . . . . 43
corresponding . . . . . 17, 85
cosine . . . . . . . . . . . . . 76, 87
Coulomb . . . . . . . . . . . . . 99
coulomb . . . . . . . . . . . . . . 99
counterimage . . . . . . . . . 69
cross-section . . . . . . . . . . 56
cube . . . . . . . . . . . . . . . . . . 88
cuboid . . . . . . . . . . . . . . . . 88
cumulative. . . . . . . . . . . .63
curve . . . . . . . . . . . . . . . . . 88
cwt . . . . . . . . . . . . . . . 93, 96
cylinder . . . . . . . . . . . . . . 88

D
data
cross-section. . . . . . . .56
grouped . . . . . . . . . . . . 60
qualitative . . . . . . . . . 56
quantitative . . . . . . . . 55
raw . . . . . . . . . . . . . . . . 56
set. . . . . . . . . . . . . .54, 55
time-series. . . . . . . . . .56

datum (see footnote) . 54
decimal . . . . . . . . . . . . . . . . 6
decimal fraction . . . . . . . 6
decimal point . . . . . . . . . . 1
degree . . . . . . . . . . . . . . . . 85
denominator . . . . . . . . . . . 5
Descartes . . . . . . . . . . . . . 90
descriptive . . . . . . . . . . . . 54
diagonal . . . . . . . . . . . . . . 87
diameter. . . . . . . . . . . . . .88
difference . . . . . . . . . . . . . . 3
digit . . . . . . . . . . . . . . . . . . . 1
directed . . . . . . . . . . . . . . 38
direction. . . . . . . . . . . . . .22
negative . . . . . . . . . . . . 38
positive . . . . . . . . . . . . 38
vector . . . . . . . . . . . . . . 29

discrete . . . . . . . . . . . . . . . 56
distance. . . . . . . . . . .13, 84
AB . . . . . . . . . . . . . . . . . . . 84
distribution
frequency. . . . . . . . . . .57
cumulative . . . . . . . . 63
table . . . . . . . . . . . . . . 57

divided by . . . . . . . . . . . . . 3
dividend . . . . . . . . . . . . . . . 4

divisible . . . . . . . . . . . . . . . 4
division . . . . . . . . . . . . . . . . 3
divisor . . . . . . . . . . . . . . . . . 4
dodecahedron. . . . . . . . .89
domain . . . . . . . . . . . . . . . 69
dr . . . . . . . . . . . . . . . . 93, 96

ap. . . . . . . . . . . . . . . . . .96
fl . . . . . . . . . . . . . . . . . . . 95

drachm . . . . . . . . . . . . . . . 93
dram . . . . . . . . . . . . . 93, 96

fluid. . . . . . . . . . . . . . . .95
drawing

cabinet . . . . . . . . . . . . . 44
oblique . . . . . . . . . . . . . 44
pictorial . . . . . . . . . . . . 44

dwt. . . . . . . . . . . . . . . . . . .96

E
e.g. (see footnote). . . . . .1
edge . . . . . . . . . . . . . . . . . . 89
educated guesses . . . . . .53
element . . . . . . . . . . . 54, 55
elimination . . . . . . . . . . . 51
empty . . . . . . . . . . . . . . . . 12
end point . . . . . . . . . . . . . 22
endpoint. . . . . . . . . . . . . .11
enlargement . . . . . . . . . . 19
equal . . . . . . . . . . . . . . . . . . 3
equality . . . . . . . . . . . . . . 50
equate . . . . . . . . . . . . . . . . 50
equation . . . . . . . . . . 30, 50

line. . . . . . . . . . . . . . . . .30
simultaneous . . . . . . . 51

equilateral . . . . . . . . . . . . 86
error . . . . . . . . . . . . . . . . . 15

absolute . . . . . . . . . . . . 15
bound . . . . . . . . . . . . . . 15
measurement . . . . . . . 15
round-off . . . . . . . . . . . 15

estimate . . . . . . . . . . . . . . 67
even . . . . . . . . . . . . . . . 4, 78
exactly divided . . . . . . . . 4

F
factor . . . . . . . . . . . . . . . . . . 3

common . . . . . . . . . . . . . 4
highest . . . . . . . . . . . . . 4
H.C.F. . . . . . . . . . . . . . 4

farad . . . . . . . . . . . . . . . . . 99

Faraday . . . . . . . . . . . . . . 99
fathom . . . . . . . . . . . . . . . 91
figure . . . . . . . . . . . . . . . . . . 1
fluid . . . . . . . . . . . . . . . . . . 95
foot . . . . . . . . . . . . . . . 91, 94

cubic . . . . . . . . . . . 92, 95
square . . . . . . . . . . 92, 94

formula . . . . . . . . . . . 49, 87
fraction . . . . . . . . . . . . . . . . 5

improper . . . . . . . . . . . . 5
proper . . . . . . . . . . . . . . .5

frequency . . . . . . . . . 57, 60
cumulative . . . . . . . . . 63
relative. . . . . . . . . . . .63
relative . . . . . . . . . . . . . 57
table . . . . . . . . . . . . . . . 57

ft . . . . . . . . . . . . . . . . . 91, 94
cu . . . . . . . . . . . . . . . . . . 92
ft3 . . . . . . . . . . . . . . . . . 95
sq . . . . . . . . . . . . . . . . . . 92
ft2 . . . . . . . . . . . . . . . . . 94

function . . . . . . . . . . . . . . 69
fur . . . . . . . . . . . . . . . . . . . 94
furlong . . . . . . . . . . . . . . . 94

G
gal . . . . . . . . . . . . . . . . 92, 95
gallon . . . . . . . . . . . . . 92, 95
gi . . . . . . . . . . . . . . . . . 92, 95
gill . . . . . . . . . . . . . . . .92, 95
gr . . . . . . . . . . . . . . . . .93, 96
gradient . . . . . . . . . . . . . . 30
grain. . . . . . . . . . . . . .93, 96
graph. . . . . . . . . . . . . . . . .70
greater than . . . . . . . . . . . 9

H
half line . . . . . . . . . . . . . . 84
hat . . . . . . . . . . . . . . . . . . . 67
Henry . . . . . . . . . . . . . . . . 99
henry . . . . . . . . . . . . . . . . . 99
Hertz . . . . . . . . . . . . . . . . . 99
hertz . . . . . . . . . . . . . . . . . 99
hexagon . . . . . . . . . . . . . . 85
histogram . . . . . . . . . . . . 61
homologous . . . . . . . . . . . 18
hundredweight . . . . 93, 96

gross . . . . . . . . . . . . . . . 96
long . . . . . . . . . . . . . . . . 96
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metric . . . . . . . . . . . . . . 96
short . . . . . . . . . . . . . . . 96

hyperbola . . . . . . . . . . . . 76
hypotenuse . . . . . . . . . . . 86

I
i.e. (see footnote) . . . . . . 2
icosahedron . . . . . . . . . . . 89
identity . . . . . . . . . . . . . . . 36
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image . . . . . . . . . . . . . 35, 69
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cubic . . . . . . . . . . . 92, 95
square . . . . . . . . . . 92, 94
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included in . . . . . . . . . . . 43
individual . . . . . . . . . . . . 54
inequality. . . . . . . . . . . . .10
inferential . . . . . . . . . . . . 54
infinity . . . . . . . . . . . . . . . 11
integer . . . . . . . . . . . . . . . . . 5
intercept. . . . . . . . . . . . . .30
intersection . . . . . . . 11, 84
interval . . . . . . . . . . . . . . . 10
class . . . . . . . . . . . . . . . 60
closed . . . . . . . . . . . . . . 10
open . . . . . . . . . . . . . . . 11

invariant . . . . . . . . . . 36, 37
inverse . . . . . . . . . . . . . 3, 24
additive . . . . . . . . . . . . . 3
function . . . . . . . . . . . . 75
multiplicative. . . . . . . .4
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